Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Stahlbeton
Stahlbeton, ein künstlicher Baustoff, ist ein Verbundwerkstoff aus den beiden Komponenten Beton und Bewehrungsstahl. Ein Verbund beider Komponenten entsteht durch die Verklebung mit dem Bindemittel Zement und die Rippung des Bewehrungsstahls. Beton hat im Vergleich zur Druckfestigkeit nur eine Zugfestigkeit von 10 Prozent. Stahl besitzt dagegen eine hohe Zugfestigkeit. Der entscheidende Gedanke beim Baustoff Stahlbeton ist es daher, auf Zug beanspruchte Stellen eines Bauteils mit Stahl zu verstärken, also zu bewehren, und in den übrigen Bereichen die Druckfestigkeit des Betons auszunutzen. Weiteres empfehlenswertes Fachwissen
KomponentenBetonSiehe Hauptartikel Beton Beton ist ein künstliches Gestein aus Zement, Betonzuschlag (Sand und Kies oder Splitt) und Wasser. Dieser Baustoff ist preiswert herzustellen, einfach formbar und besonders geeignet für massige Bauteile. Seine mechanischen Eigenschaften sind gekennzeichnet durch eine relativ hohe Druckfestigkeit sowie eine niedrige Zugfestigkeit (ungefähr 10% der Druckfestigkeit). BewehrungsstahlSiehe Hauptartikel Bewehrungsstahl Bewehrungsstahl, auch als Betonstahl bezeichnet, ist ein spezieller, heutzutage gerippter oder profilierter Rundstahl mit einer hohen Zugfestigkeit. Dieser wird in die Schalung des Bauteils eingebaut und anschließend einbetoniert. Dabei wird der Betonstahl durch den Beton komplett eingehüllt, was den Verbund zwischen beiden Baustoffen bewirkt. TragverhaltenDer Verbund zwischen dem Beton und dem Betonstahl entsteht durch die Haftung des Bindemittels Zement (Haftverbund), durch die Reibung zwischen Stahl und Beton (Reibungsverbund) und durch den infolge der Rippung des Betonstahls erzeugten Formschluss (Scherverbund). In ungerissenem Stahlbeton sind die Dehnungen der beiden Baustoffe gleich groß. Dieser Zustand, ohne Relativverschiebungen zwischen Beton und Stahl, wird auch als vollkommener Verbund bezeichnet. Unbewehrter Beton versagt bei Zugbeanspruchung (z. B. Biegezug) aufgrund seiner Sprödigkeit ohne ankündigende Rissbildung schlagartig. Dies geschieht im Vergleich zur Druckbeanspruchung schon bei geringer Belastung, weil die Zugfestigkeit klein ist. Aus diesem Grund werden die zugbeanspruchten Bereiche des Betons mit Bewehrungsstahl versehen, der einbetoniert ist. Da der Beton auf Zug den großen Dehnungen des Stahls nicht folgen kann, reißt er im Zugbereich. Im Bereich eines Risses ist dann nur noch der Bewehrungsstahl wirksam. Zug- bzw. biegezugbeanspruchte Bauteile können daher so bemessen und hergestellt werden, dass sich das Bauteilversagen durch eine intensive Rissbildung und signifikante Verformungen vorankündigt. Zur wirklichkeitsnahen Berechnung der Verformungen werden die Berechnungsverfahren der Baustatik erweitert, wie beispielsweise mit der nichtlinearen Stabstatik. Bei Bauteilen, die auf Druck beansprucht werden, können Stahleinlagen die Tragfähigkeit auf Druck erhöhen. Voraussetzung für die Anwendung des Verbundwerkstoffs Stahlbeton sind die in etwa gleich großen Wärmeausdehnungskoeffizienten (10-5 nach den Stahlbetonnormen) von Stahl und Beton, was bei Temperaturänderungen in etwa gleich große Wärmedehnungen der beiden Materialien zur Folge hat und somit keine nennenswerten Eigenspannungen im Verbundwerkstoff Stahlbeton bewirkt. RisseAufgrund des Tragverhaltens sind Risse bei dem Verbundbaustoff Stahlbeton im Regelfall möglich und zulässig. Nur Sonderbauteile, wie Bodenplatten von Tankstellen, müssen rissfrei sein, was durch entsprechende Bauteilgeometrien und Dehnfugen oder Vorspannen sichergestellt wird. Sonst dürfen die Risse, je nach Umweltbedingungen und Nutzung des Bauteils, rechnerisch nicht breiter als 0,1 bis 0,4 mm sein. Eine konstruktive Maßnahme gegen zu große Rissbreiten ist das Einlegen einer ausreichenden Bewehrung, die die Risse zwar nicht verhindert, aber dafür sorgt, dass statt einiger weniger, breiter Risse entsprechend mehr aber schmale und somit ungefährliche Risse entstehen. Von diesen unvermeidbaren konstruktiven Rissen sind Oberflächenrisse zu unterscheiden, die grundsätzlich unerwünscht sind und häufig betontechnologische Gründe haben, wie eine ungünstige Frischbetonzusammensetzung (mit z.B. zu hoher Hydratationswärmeentwicklung), einen nicht ordnungsgemäßen Betoneinbau und eine ungenügende Nachbehandlung der Frischbetonoberfläche. Bauchemie des StahlbetonsEine weitere Voraussetzung für den Verbundwerkstoff ist der Zementstein im Beton und dessen alkalisches Milieu mit einen pH-Wert von 12-14, das den Bewehrungsstahl bei ausreichender Betondeckung dauerhaft vor Korrosion schützt. Mit einem Wert < 10 ist dieser Schutz, die sogenannte Passivierung, nicht mehr sichergestellt. BewehrungsüberdeckungEine ausreichende Bewehrungsüberdeckung, in Deutschland üblicherweise als Betondeckung bezeichnet, ist bei Stahlbetonbauteilen erforderlich, um den notwendigen Verbund zwischen Beton und Bewehrung, eine genügende Dauerhaftigkeit des Bauteils sowie einen entsprechenden Feuerwiderstand sicherzustellen. Aufgrund des erforderlichen Verbundes sollte die Bewehrungsüberdeckung mindestens dem Betonstahldurchmesser entsprechen. Aus den Umweltbedingungen (Expositionsklassen) ergibt sich nach der DIN 1045-1:2001-07 für die erforderliche Dauerhaftigkeit die notwendige Betondeckung über dem Betonstahl. Die darin beschriebenen Werte gehen von einer Nutzungsdauer von mindestens 50 Jahren bei üblichem Instandhaltungsaufwand aus. Kleiner als 15 mm darf sie nicht sein, üblich sind 20 bis 50 mm. Gewährleistet wird die Betondeckung durch Abstandhalter und Unterstützungsböcke bzw. -körbe. Unterstützungsböcke bestehen meist aus entsprechend gebogenem Betonstahl und werden vor allem für die obere Bewehrungslage von Platten verwendet. Abstandhalter werden dagegen zur Sicherstellung der Distanz zwischen Bewehrung und Schalung verwendet. Diese gibt es in verschiedensten Variationen. Es können unter anderem kleine Klötzchen oder Schlangen aus Beton bzw. Faserbeton sein, daneben sind auch Leisten oder Ringe aus Kunststoff üblich. EinbauteileNeben dem Betonstahl werden planmäßig auch andere Bauelemente einbetoniert. Diese werden als Einbauteile bezeichnet. Sie dienen meist der Befestigung von Bauelementen am Stahlbetonbauteil, wie zum Beispiel Stahlkonstruktionen. Dazu zählen unter anderem Ankerplatten und Ankerschienen. Weitere Einbauteile, wie Dübelleisten oder Seilschlaufen, ersetzen eine geometrisch schwierige und aufwändige Betonstahlbewehrung durch eine für die Beanspruchung des Betons spezielle entwickelte "Stahlkonstruktion" . Bedeutung und AnwendungStahlbeton ist mit über 100 Millionen Kubikmetern im Jahr der wichtigste Baustoff Deutschlands, während der Anteil des Betonstahls an der Stahlproduktion in Deutschland ca. 12 % bzw. ungefähr 6 Millionen Tonnen beträgt. Der Einsatz von Stahlbeton statt des unbewehrten Betons ist immer dann notwendig, wenn in einem Bauteil Zugspannungen auftreten, die zu einem schlagartigen Versagen der Gesamttragfähigkeit führen könnten. Im Vergleich zu anderen Baustoffen, wie Stahl, Holz oder Kunststoff, ist seine Anwendung immer dann sinnvoll, wenn keine filigranen und leichte Tragstrukturen notwendig sind. Wie der Einsatz beim Bau von Bunkern zeigt, ist Stahlbeton bei ausreichenden Abmessungen auch für extreme Einwirkungen geeignet. Vorteilhaft sind insbesondere die Nichtbrennbarkeit und der hohe Feuerwiderstand. Grenzen bei der Benutzung des Baustoffes ergeben sich aus dem hohen Eigengewicht des Betons, was als tote Last die erforderliche Betonstahlmenge vergrößert und bei schlanken Konstruktionen infolge der Rissbildung zu großen Verformungen führt. In diesen Fällen ist der Einsatz einer Verbundkonstruktion oder von Spannbeton besser. Der Spannbeton unterscheidet sich vom Stahlbeton durch eine planmäßige Vorspannung (=Vordehnung) der Stahleinlagen, der so genannten Spannglieder. Damit wird eine zusätzlichen äußere Drucklängskraft aufgebracht, wodurch die Zugspannungen überdrückt werden und eine Rissbildung, somit die Bauteilverformung, stark reduziert wird. GeschichteGrundlage der Entwicklung waren die Erfindung des Romanzement im Jahre 1798 durch den Engländer J. Parker und des Portlandzement durch den Engländer J. Aspdin im Jahre 1824. In der Mitte des 19. Jahrhunderts wurden erstmals in Frankreich Betonbauteile durch Stahleinlagen verstärkt. 1855 baute J. L. Lambot ein Boot aus eisenverstärktem Zementmörtel, seit 1861 stellte der Gärtner Joseph Monier Pflanzkübel aus Zementmörtel her, die er mit einem Eisengeflecht verstärkte, damit sie nicht so leicht zerbrachen. 1867 erhielt er darauf ein Patent. Bis heute heißen die verwendeten Rundeisen Moniereisen. Ältere Bezeichnungen für Stahlbeton sind Eisenbeton und Monierbeton. Bereits 1861 veröffentlichte F. Coignet Grundsätze für die Verwendung von bewehrtem Beton und stellte 1867 auf der Weltausstellung in Paris Träger und Röhren aus bewehrtem Beton aus. Der Gutspächter Joseph Louis Lambot meldete 1855 ein Patent für einen neuen "Holzbauwerkstoff" an, der er "Ferciment" nannte. Seiner Patentschrift kann folgendes entnommen werden: "Meine Erfindung hat ein neues Erzeugnis zum Gegenstand, das dazu dient, das Holz im Schiffbau und überall dort zu ersetzen, wo es feuchtigkeitsgefährdet ist, .. Ich gebe diesem Netz (aus Draht und Stäben) eine Form, die im bestmöglichen Maße dem Gegenstand angepasst ist, den ich herstellen will und bette es anschließend in hydraulischen Cement oder ähnliches wie Bitumen, Teer oder ihren Gemischen ..." Dieses Patent wurde dann von Coignet erweitert. Parallel zu den französischen Ingenieuren führte der amerikanische Rechtsanwalt Thadeus Hyatt seit 1855 Versuche über die Verwendung von Stahleinlagen in Beton durch. In seinem Grundpatent von 1878 schrieb er: " ... Hydraulic cements and concretes are combined with metal bars and rods, so as to form slabs, beams and arches. The tensible strength of the metal is only utilized by the position, in which it is placed in slabs, beams etc. ...". Hyatt hatte die Tragwirkung erkannt. In Deutschland erwarben 1885 G. Wayss und A. Freytag die Monierpatente. Im gleichen Jahr traf Wayss den Regierungsbaumeister Matthias Koenen, dem die Leitung des damals im Bau befindlichen Reichstagsgebäudes unterlag. Nach dem Ausräumen von Bedenken wegen der Korrosionsgefahr, Haftfestigkeit und unterschiedlicher Temperaturdehnungen sowie aufgrund von Versuchen, entschloss sich Koenen das neue System anzuwenden. Seine Erkenntnisse veranlassten ihn eine Broschüre zu verfassen, die Wayss 1887 unter den Titel "Das System Monier in seiner Anwendung auf das gesamte Bauwesen" herausgab. Wenig später brachte Emil Mörsch eine erste wissenschaftlich begründete Darstellung der Wirkungsweise des Eisenbetons, wie der Stahlbeton bis 1920 genannt wurde. Diese wurde 1902 veröffentlicht. Dazu führte Emil Mörsch als einer der Ersten umfangreiche Versuchsreihen durch. Er war schließlich von 1916 bis 1948 Professor für Statik der massiven Tragwerke, gewölbten Brücken und Eisenbetonbau an der Technischen Hochschule Stuttgart und hat dort die Bemessungsverfahren für Stahlbeton entscheidend mitgeprägt.
Literatur
|
|
Dieser Artikel basiert auf dem Artikel Stahlbeton aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |