Forscher entschlüsseln Moleküldynamik von Benzol-Doppelmolekül
Untersuchung löst 20 Jahre altes Rätsel der Chemie
DESY
Benzol ist die grundlegendste sogenannte aromatische Verbindung. Sie besteht aus einem Ring von sechs Kohlenstoffatomen, an denen jeweils ein Wasserstoffatom hängt. Das Doppelmolekül des Benzols, das sogenannte Dimer, ist dabei der Prototyp für die Untersuchung einer ganzen Klasse chemischer Bindungen, der Van-der-Waals-Bindung. Dabei handelt es sich um eine relativ schwache Art der Bindung zwischen Molekülen, die in vielen Bereichen eine wichtige Rolle spielt. Ein anschauliches Beispiel sind Geckos, die dank der Van-der-Waals-Kraft zwischen den feinen Härchen an ihren Füßen und dem Untergrund an der Decke laufen können.
Für das Benzoldimer lagern sich in der Regel die beiden Benzolringe wie ein T aneinander: Ein Ring bildet die Kappe, der andere den Stamm. Allerdings setzt der Stamm etwas schief am Rand der Kappe an, nicht in der Mitte. Trotz dieser asymmetrischen Struktur verhält sich das Benzoldimer jedoch wie ein symmetrischer Kreisel, wenn man es mit Mikrowellen untersucht. Das war lange unverstanden. Auch die reichhaltige Unterstruktur, die sich im sogenannten Rotationsspektrum zeigt, ließsich nicht erklären.
Mit ihrer Kombination aus hochauflösenden Mikrowellenuntersuchungen und den theoretischen Berechnungen, für die maßgeblich Prof. Ad van der Avoird von der Radboud-Universität im niederländischen Nijmegen verantwortlich ist, kann die Gruppe um Schnell nun zeigen, dass die Kappe nahezu frei rotiert und damit das sogenannte Rotationsspektrum des Benzoldimers dominiert. Zur Unterstruktur des Spektrums trägt unter anderem ein Kippeln der Kappe auf dem Stamm bei. „Überrascht hat uns, dass auch der Stamm durchrotiert“, berichtet Schnell, die am CFEL eine unabhängige Max-Planck-Forschungsgruppe zur Erkundung von Struktur und Dynamik von Molekülen leitet.
„Auf diese Weise wurde das 20 Jahre alte Rätsel der inneren Dynamik des Benzoldimers gelöst, was den Weg für weitere Untersuchungen der Struktur und Dynamik von aromatischen Molekülkomplexen mit biologischer Bedeutung ebnet“, schreiben die Forscher in dem Fachjournal. Denkbar sei etwa, die Methode beispielsweise auch auf Aminosäuren mit aromatischen Untereinheiten anzuwenden, betont Schnell.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.