Gewinnen durch Verlust: Scheinbar widersinniges Verhalten von Lasern
Einschalten durch Ausschalten
Matthias Liertzer und Prof. Stefan Rotter stießen zunächst in Computersimulationen auf den Effekt: „Wenn man zwei kleine, gleichartig gebaute Laser in engen Kontakt zueinander bringt, dann können sich diese auf eine Weise beeinflussen, die auf den ersten Blick jeder Erwartung widerspricht“, erklärt Stefan Rotter. „Normalerweise leuchtet ein Laser, wenn man ihm mehr Energie zuführt. Doch bei geeigneter Laser-Kopplung kann eine Energiezufuhr die beiden Laser abschalten und ein Energieverlust kann die Laser zum Leuchten bringen.“
In einem Laser werden Lichtteilchen vervielfältigt, es kommt zu einer Kettenreaktion die letztendlich kräftige Strahlung erzeugt. Normalerweise ist dabei jeder Lichtverlust höchst unerwünscht. Wenn zu viel Licht verlorengeht, etwa durch eine schlecht verspiegelte Außenwand des Lasers, dann kann die Lichtproduktions-Kettenreaktion nicht aufrecht erhalten werden und der Laser erlischt.
Paradoxes Verhalten am „Entartungspunkt“
„Die Eigenschaften der Laser kann man durch mathematische Gleichungssysteme sehr gut beschreiben und verstehen“, erklärt Matthias Liertzer. „Wenn man sich diese Gleichungen genau ansieht, mit denen auch die Kopplung zwischen zwei Lasern beschrieben wird, dann stellt man fest, dass hier sogenannte Entartungspunkte auftreten. Befindet sich der Zustand, der den Laser mathematisch charakterisiert, in der Umgebung eines solchen Entartungspunktes, dann zeigt sich paradoxes Verhalten.“
Im Experiment, das von Bo Peng und Dr. Sahin Kaya Ozdemir mit der Gruppe von Prof. Lan Yang in St. Louis, USA durchgeführt wurde, stellte man zwei winzige kreisförmige Laser her, die man in unmittelbarer Nähe zueinander platzierte. Zusätzlich wurde eine feine Spitze aus Chrom in das System eingebracht, die Licht stark absorbiert. Durch genaues Justieren der Spitze kann der Lichtverlust fein dosiert werden. „Die Experimente bestätigten unsere Vorhersagen: Wenn sich das System in der Nähe des Entartungspunktes befindet, führt die Absorption der Spitze dazu, dass sich der Laser einschaltet und zu leuchten beginnt“, sagt Stefan Rotter.
Die Besonderheiten solcher Entartungspunkte zu verstehen wird für ganz unterschiedliche technologische Anwendungen wichtig sein, glaubt Rotter: „Das kann für hochsensible Detektoren nützlich sein, oder für jedes andere System das aus gekoppelten Oszillatoren besteht, wie zum Beispiel in der Opto-Mechanik. Jedenfalls gibt es noch viele interessante Effekte, die man im Zusammenhang mit diesen Entartungspunkten studieren kann“, meint Stefan Rotter.
Meistgelesene News
Organisationen
Weiterführender Link
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.