Signale aus dem absoluten Nichts

Konstanzer Physikern gelang die direkte Messung von Vakuum-Fluktuationen

05.10.2015 - Deutschland

Welche Eigenschaften hat das Vakuum, das absolute Nichts? Physiker gingen bislang davon aus, dass es nicht möglich sei, die Eigenschaften des Nichts – des Grundzustandes des leeren Raumes – direkt zu vermessen. Einem Team von Konstanzer Physikern um Prof. Dr. Alfred Leitenstorfer ist nun durch weltweit führende optische Messtechniken genau dies gelungen. Mit Lichtimpulsen, die kürzer sind als eine halbe Lichtschwingung im untersuchten Spektralbereich, konnten sie sogenannte Vakuum-Fluktuationen beobachten. Diese Felder existieren selbst im absoluten Nichts und bei totaler Dunkelheit, also auch dann, wenn die Intensität des Lichts und der Radiowellen komplett verschwindet. Die Forschungsergebnisse sind von fundamentaler Bedeutung für die Weiterentwicklung der Quantenphysik.

Claudius Riek

Vakuum-Fluktuationen lassen sich als grundlegende Schwankungen des Lichtfeldes selbst in der totalen Dunkelheit vorstellen, deren positive (rot) und negative (blau) Bereiche zufällig im Raum verteilt sind und sich ständig mit hoher Geschwindigkeit ändern – ähnlich dem weißen Rauschen auf einem Bildschirm ohne Signaleingang. Die Ausschläge werden umso größer, je kleiner die Raumbereiche und Zeiten sind, über die ein Messinstrument mittelt. Daher tastet das Experiment von Riek et al. ein minimales Raum-Zeit-Volumen ab, dessen laterale Dimensionen Delta x und Delta y durch die starke Fokussierung des Abtast-Laserstrahls festgelegt sind. Die räumliche Länge Delta z und zeitliche Dauer Delta t des Femtosekunden-Abtastimpulses (grün) sind über die Lichtgeschwindigkeit miteinander verknüpft und definieren die longitudinale Ausdehnung. Die Schwankungsbandbreite Delta E des elektrischen Vakuum-Feldes folgt dann aus einem relativ einfachen mathematischen Zusammenhang, in den außer dem vierdimensionalen Abtastvolumen Delta x Delta y Delta z Delta t nur fundamentale Naturkonstanten eingehen: Das Planck’sche Wirkungsquantum ħ und die Permittivität des Vakuums Epsilon 0.

Claudius Riek

Detaillierte Ansicht des zentralen Teils im experimentellen Aufbau zur direkten Detektion von Vakuum-Fluktuationen. Links ist der für die Messung verwendete elektro-optische Kristall in einer Halterung zwischen zwei goldbeschichteten Parabolspiegeln zu erkennen, die der Fokussierung und Rekollimation der extrem breitbandigen Lichtfelder dienen. Rechts davon befindet sich ein spezieller Strahlteiler zur Überlagerung der ultrakurzen Abtast-Lichtimpulse mit mittelinfraroten Quantenfeldern. Ringsum angeordnet sind mechanische und optische Präzisionskomponenten für die Justage des Strahlengangs zu sehen. Die hochspezielle Femtosekunden-Lichtquelle sitzt außerhalb des hier abgebildeten Bereichs.

Claudius Riek
Claudius Riek

Die Existenz von Vakuum-Fluktuationen war in der Theorie bereits bekannt, sie folgt aus der Heisenbergschen Unschärferelation. Diese besagt, dass elektrische und magnetische Felder niemals gleichzeitig verschwinden können. Daher treten selbst im Grundzustand von Licht und Radiowellen, also in absoluter Dunkelheit, endliche Schwankungen des elektromagnetischen Feldes auf. Ein unmittelbarer experimenteller Nachweis dieses grundlegenden Phänomens galt bislang aber als ausgeschlossen. Es wurde davon ausgegangen, dass sich Vakuum-Fluktuationen stets nur indirekt in der Natur manifestieren, in einem breiten Spektrum an Konsequenzen. Diese reichen von der spontanen Lichtemission angeregter Atome beispielsweise in einer Leuchtstoffröhre bis zu Einflüssen auf die Struktur des Universums bereits während des Urknalls.

Aufbauten zur Messung elektrischer Felder mit extrem hoher zeitlicher Auflösung und Empfindlichkeit haben es nun ermöglicht, allen Vermutungen zum Trotz Vakuum-Fluktuationen direkt zu detektieren. Weltführende optische Technologien und spezielle Ultrakurzpuls-Lasersysteme höchster Stabilität bilden die Grundlage dieser Studie an der Universität Konstanz. Diese Technologien wurden vom Konstanzer Forschungsteam selbst entwickelt, das zudem eine genaue Beschreibung der Resultate auf Basis der Quantenfeldtheorie erarbeitet hat. Die zeitliche Auflösung des Experiments liegt im Femtosekundenbereich. Gemessen wurde mit einer nur noch durch die Quantenphysik begrenzten Empfindlichkeit. „Wir können durch diese extreme Präzision erstmalig direkt sehen, dass wir ständig von elektromagnetischen Vakuum-Fluktuationsfeldern umgeben sind“, zieht Alfred Leitenstorfer sein Fazit.

„Das wissenschaftlich Überraschende an unseren Messungen ist, dass wir direkt Zugriff auf den Grundzustand eines Quantensystems gewinnen, ohne diesen zu verändern, beispielsweise durch Verstärkung auf endliche Intensität“, erläutert Leitenstorfer, der von den Forschungsergebnissen selbst überrascht ist: „Es hat uns ein paar Jahre lang schlaflose Nächte beschert – wir mussten alle Möglichkeiten eventueller Störsignale ausschließen“, schmunzelt der Physiker. „Insgesamt stellt sich heraus, dass unser Zugang auf elementaren Zeitskalen, also kürzer als eine Schwingungsperiode der untersuchen Lichtwellen, den Schlüssel darstellt zum Verständnis der überraschenden Möglichkeiten, die unser Experiment erschließt.“

Originalveröffentlichung

C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer; Direct Sampling of Electric-Field Vacuum Fluctuations; Online-Version ab 1. Oktober 2015 in Science Express

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...