Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Ether
Weiteres empfehlenswertes Fachwissen
Natürliches VorkommenEther sind in der Natur weit verbreitete Verbindungen. So liegen die meisten Monosaccharide in einer cyclischen Halbacetal-Form vor, die faktisch intramolekulare Ether sind. Die glycosidische Bindung der Polysaccharide ist eine Sauerstoffbrücke zwischen zwei Kohlenstoffatomen. Auch viele andere Naturstoffe wie z.Bsp. die Aromastoffe Anisol und Vanillin sind Ether. StrukturAllgemein kann ein Ether als dargestellt werden. R1 und R2 sind hier Alkyl- oder Aryl-Reste, die im Fall eines cyclischen Ethers verbunden sind. Es sind auch Alkyl-Aryl-Ether möglich (siehe Anisol und Vanillin). Die Bindungsverhältnisse in Ethern ähneln denen in Alkoholen und im Wasser, das als Grundkörper dieser beiden Verbindungsklassen aufgefasst werden kann. Kohlenstoff- und Sauerstoff-Atome sind jeweils in einem speziellen Hybridisierungszustand, der zu einer tetraedrischen Anordnung der Atomorbitale um alle beteiligten Atome führt (sp3-Hybridisierung). Der Winkel ist allerdings aufgrund der gegenüber Wasserstoff sterisch anspruchsvolleren Alkylsubstituenten mit 112° geringfügig erweitert. Die C-O-Bindungen sind mit ca. 143 pm so lang wie in Alkoholen. NomenklaturGemäß den IUPAC-Richtlinien werden Ether als Alkoxy-Alkane bezeichnet: R1-O-R2, wobei die Gruppe O-R2 als Alkoxy-Substituent einer Alkan-Kette R1 behandelt wird. Der niederrangigere Substituent der Kette ist hierbei der Alkoxy-Rest (-O-R2), der höherrangigere bildet den Stamm des Stoffnamens. Ebenfalls von der IUPAC zugelassene Namen werden durch Nennung der beiden Alkylreste und der Endung ether gebildet und sind besonders für kleine, aliphatische Ether gebräuchlich. Bei symmetrischen Ethern ist dann die Bezeichnung sehr einfach durch Vorstellen eines Di möglich (z. B.: Diethylether (Ethoxyethan) oder Dimethylether (Methoxymethan)). Cyclische Ether sind fast sämtlich nur unter ihrem Trivialnamen bekannt. Geradkettige und verzweigte EtherEntsprechend verläuft die Benennung der Alkoxy-Alkane. Beispiele:
Cyclische EtherCyclische Ether werden als Cycloalkane betrachtet, bei denen ein (oder mehrere) C-Atome durch (ein) O-Atom(e) ersetzt wurde(n). Um dies zu verdeutlichen, wird die Silbe "Oxa" an der entsprechenden Position eingefügt. Beispiel : Der IUPAC-Name ist Oxacyclohexan. Die Verbindung wird jedoch fast ausschließlich unter dem Namen Tetrahydropyran geführt. Die Verbindung ist cyclisch (cyclo), hat eine Ringgröße von 6 Atomen (hexan) und an einer Position ist ein C-Atom durch ein Sauerstoff-Atom ersetzt (oxa). Entsprechend gilt für die folgende Verbindung der Name 3-Fluor-oxacyclohexan oder gängiger: 3-Fluor-tetrahydropyran (das Heteroatom im Ring erhält die Position 1). EigenschaftenDie meisten Ether sind relativ reaktionsträge und werden daher oft als Lösungsmittel in der präparativen organischen Chemie verwendet. Da höhere Ether aufgrund wachsender sterischer Behinderungen schlechter Wasserstoffbrückenbindungen ausbilden können, nimmt die Löslichkeit in Wasser mit zunehmender Größe des Alkylrestes schnell ab.
Die physikalischen Eigenschaften der Ether unterscheiden sich erheblich von denen der entsprechenden Alkohole mit ähnlicher molarer Masse. Die Schmelz- und Siedepunkte der Ether sind erheblich niedriger als die der vergleichbaren Alkohole. Die hohe Elektronegativität des Sauerstoffs bestimmt jedoch ähnlich wie bei den Alkoholen wesentlich die Eigenschaften der Ether. Besonders bei cyclischen Ethern führt dies zur Ausbildung eines ausgeprägten Dipolmoments. Außerdem liegt das polare Sauerstoff-Atom in einer cyclischen Struktur exponierter vor. Dies wird von der Wasserlöslichkeit einiger cyclischer Ether bewiesen.
Das niedrige Dipolmoment des 1,4-Dioxan wird durch seine symmetrische Struktur verursacht: die beiden sich im Ring gegenüberstehenden Sauerstoffatome verringern die Gesamtpolarität des Moleküls.
EthersyntheseFür Ether sind verschiedene Synthesewege möglich. Der wohl bekannteste Mechanismus ist die Ethersynthese nach Alexander William Williamson (1824-1904, Prof. am University College London). Hierbei wird ein Alkali-Alkoholat (hier ein Natrium-Alkoholat) mit einem Halogenalkan zur Reaktion gebracht, wobei neben dem entsprechenden Alkali-Halogen-Salz das gewünschte Produkt, der Ether, entsteht: (R = Alkyl-Rest, Wasserstoff) Die Williamson-Ethersynthese führt bei intramolekularer Reaktion zu cyclischen Ethern: (nicht benannte Atome = Alkyl-Rest) Der einfachste Vertreter dieser Klasse ist das Oxacyclopropan, der bekannteste Vertreter das Tetrahydrofuran (THF), welches ein beliebtes Lösemittel in der organischen Chemie ist. weitere Mechanismen
Unter Säurekatalyse (hier Salzsäure) können zwei Moleküle Alkohol zu einem Ether kondensiert werden: (R und R' = Alkyl-Rest) Bei Verwendung nur einer Alkoholart (R = R') können auf diesem Weg symmetrische Ether dargestellt werden.
Alkohole können an Doppelbindungen addieren, wobei zunächst das Proton der Alkohol-Gruppe elektrophil an die Doppelbindung addiert wird. Anschließend lagert sich das Alkoholat nukleophil an: (R = Alkyl-Rest, Wasserstoff (evtl. Markownikow-Regel beachten)) Besondere Ether
HeteroetherNeben den „normalen“ Ethern, also Alkylresten mit Sauerstoffbrücke, gibt es auch Analoga mit Verwandten des Sauerstoffs. In der 6. Hauptgruppe folgt auf den Sauerstoff der Schwefel. Dieser bildet entsprechend den oben beschriebenen Regeln so genannte Thioether. Bei diesen ist die Sauerstoffbrücke durch eine Schwefelbrücke ersetzt. Einer der bekanntesten Thioether dürfte das Senfgas sein. KronenetherKronenether sind eine besondere Gruppe von cyclischen Ethern, die aufgrund ihrer Bedeutung sowohl in der Chemie von Lebewesen, als auch in der technischen Chemie Erwähnung verdienen. Allgemein sind es cyclische Ether, die aus aneinander gebundenen 1,2-Diethern bestehen. Die gängige Nomenklatur von Kronenethern ist ungewöhnlich. Einer der einfachsten Kronenether ist [12]Krone-4. Hierbei gibt [12] die Gesamtzahl der Atome im Molekül (außer Wasserstoffatome) und -4 die Zahl der Sauerstoffatome im Molekül an. Kronenether besitzen die einzigartige Fähigkeit, Metallatome (bzw. Metallatomionen) in einer Art Käfigstruktur zu binden und dadurch als Bausteine zu Transportsystemen dieser Metalle zu dienen. PolyetherLangkettige Verbindungen der Art heißen Polyether (auch Polyalkylenglycole, Polyetherpolyole, Polyalkylenoxide). Beispiele für diese Gruppe polymerer Ether sind Polyethylenglykol und Polypropylenglykol, die beide durch katalyische Polymerisation der entsprechenden Epoxide (Oxirane) Ethylenoxid bzw. Propylenoxid hergestellt werden. In Fall von Polyethylenglykol und Polypropylenglykol sind alle Reste (R1, R2, R3...) mit Ausnahme der Endglieder der Ketten identisch. Bei der Umsetzung von Epoxiden mit Diolen können verschiedenste Polymere hergestellt werden. Die Zugabe eines einfachen Alkanols stoppt die Polymerisierung. Auch Epoxidharze sind Polyether mit endständigen Epoxidgruppen. Gefahrenhinweise und LagerungIm Umgang mit Ethern (Ausnahme: Methyl-tert-butylether = MTBE) ist besonders darauf zu achten, dass Ether mit Luftsauerstoff hochexplosive Peroxide bilden. Diese können meist durch die Braunverfärbung von essigsauren Iodid-Lösungen nachgewiesen werden. Im Handel sind spezielle Teststäbchen erhältlich. Die Lagerung von Ethern für den Labor-Gebrauch sollte daher nur in kleinen Gebinden von maximal 1 Liter über Kaliumhydroxid-Plätzchen in Braunglasflaschen erfolgen. Bei dem Umgang mit niederen Ethern sollte deren niedriger Siedepunkt und leichte Entflammbarkeit nie unterschätzt werden. (Diethyl)Ether-Luft-Gemische sind zwischen 2-36 Vol% explosiv. Wichtig ist, dass Ether-Dämpfe nicht nur farblos, sondern auch schwerer als Luft sind. Sie sammeln sich also an tiefgelegenen Stellen. Aufgrund dieser Tatsache und der narkotisierenden Wirkung von Ethern sind sie nur in gut funktionierenden Abzügen zu verwenden. VerwendungAufgrund ihres ambivalenten Charakters sind die meisten Ether hervorragende Lösungsmittel und lösen viele wasserunlösliche Verbindungen. So wird der Großteil des produzierten Diethylethers als Lösungsmittel im Umfeld der chemischen und medizinischen Industrie sowie im Laborbedarf verbraucht. Dies und das
Kategorien: Stoffgruppe | Ether |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dieser Artikel basiert auf dem Artikel Ether aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |