Meine Merkliste
my.chemie.de  
Login  

ATLAS (Detektor)



    ATLAS (ATLAS stand ursprünglich für A Toroidal LHC AparatuS, wird aber aktuell nur noch als Eigenname benutzt) ist ein Teilchendetektor am Large Hadron Collider, einem im Bau befindlichen Teilchenbeschleuniger am europäischem Kernforschungszentrum CERN. Unter anderem soll mit ATLAS erstmals das Higgs-Boson, ein für die Erklärung der Masse wichtiger Bestandteil, nachgewiesen werden sowie die derzeit kleinsten Bausteine der Materie, Leptonen und Quarks, auf eine etwaige Substruktur hin untersucht werden. Zur besseren Überprüfbarkeit wird ATLAS mit dem Compact Muon Solenoid (CMS) ein weiterer Detektor zur Seite gestellt, der einen physikalisch anderen Ansatz zum Nachweis derselben Fragestellungen verfolgt. Am ATLAS-Experiment werden etwa 1870 Forscher aus 150 Instituten weltweit teilnehmen.

Der Bau des LHC wird voraussichtlich im Mai 2008 abgeschlossen. Die geplante Betriebszeit von ATLAS ist auf 10 Jahre angesetzt.

Inhaltsverzeichnis

Aufbau des ATLAS-Detektors

ATLAS ist ein 45 m langer, zylindrischer, 7000 Tonnen schwerer Koloss mit einem Durchmesser von 22 m. Das Experiment besteht aus vier übergeordneten Systemen. Diese sind, wie bei Teilchendetektoren für Colliding-Beam-Experimente üblich, in einer Zwiebelschalenstruktur angeordnet, wobei jede Schicht andere Teilchen und andere Eigenschaften der Teilchen misst.

Innerer Detektor

Der Innere Detektor besteht aus drei Subdetektoren, die sich in einem solenoiden Magnetfeld von 2 Tesla befinden. Der Übergangsstrahlungsspurdetektor (engl. TRT, Transition Radiation Tracker) ist der äußerste dieser Gruppe und registriert etwa 30 Spurpunkte pro durchgehendem ionisierenden Teilchen. Durch die Krümmung der Flugbahn des geladenen Teilchens kann die Ladung und der Transversalimpuls bestimmt werden. Zusätzlich kann durch den Nachweis von Übergangsstrahlung zwischen Elektronen und Hadronen unterschieden werden. Die nächste Lage bildet ein Silizium-Streifendetektor. Dieser liefert weitere drei bis neun Spurpunkte für ein durchgehendes ionisierendes Teilchen. Die höchste Auflösung der Bestimmung der Stoßparameter erreicht der ATLAS-Pixeldetektor (ebenfalls Silizium als Sensormaterial) als innerster der Detektoren mit dem kleinsten Abstand von 50,5 mm (drei Lagen) zum Wechselwirkungspunkt.

Kalorimetersystem

Das Kalorimetersystem besteht aus einem elektromagnetischen Kalorimeter - bestehend aus dem Vorwärtskalorimeter und dem elektromagnetischen Kalorimeter - und einem hadronischen Kalorimeter. Das elektromagnetische Kalorimeter bestimmt Position und Energie von elektromagnetisch wechselwirkenden Teilchen. Allerdings werden hierbei keine Teilchen erfasst, die sehr viel schwerer als ein Elektron sind – wie zum Beispiel das Myon –, da der Energieverlust eines Teilchens innerhalb von Materie indirekt proportional zur Masse des Teilchens ist. Das sich daran anschließende hadronische Kalorimeter bestimmt die Position und Energie der hadronischen Materie.

Myon-Detektoren

Es werden zwei verschiedene Myon-Systeme eingesetzt, die einen primär zur Bestimmung des Trajektorienverlauf (mit einer hohen Ortsauflösung) und Impuls der Myonen (precision chambers) und die anderen werden primär zur Triggerung (schnelle Markierung von physikalisch interessanten Ereignissen) von Ereignissen mit Myonen benutzt. Die Myonen können getrennt gemessen werden, da sie auf Grund ihrer großen Masse das elektromagnetische Kalorimeter ungestört durchqueren.

Magnetsystem

Das Magnetsystem erzeugt das magnetische Feld, welches geladene Teilchen ablenkt. Es besteht aus dem Endkappen-Toroiden und dem Barrel-Toroiden. Toroiden sind Magnete in Form eines Torus, welche im Inneren ein sehr homogenes Magnetfeld erzeugen.


Ziele des ATLAS-Experiments

Eine wichtige Frage, die geklärt werden soll, ist, ob Leptonen und Quarks eine Substruktur haben. Denn damit könnte dann sehr wahrscheinlich beantwortet werden, warum es genau drei Generationen von Elementarteilchen gibt, oder ob es gar noch weitere unentdeckte Teilchen gibt. Ein weiteres Problem der Elementarteilchenphysik, das aufgeklärt werden soll, ist, wie es zu den stark unterschiedlichen Massen der Elementarteilchen kommt. Die Massen reichen von der nahezu verschwindenden Ruhemasse des Neutrinos bis zur Masse des Top-Quarks, die der eines Gold-Atoms entspricht. Dies hofft man durch den so genannten Higgs-Mechanismus erklären zu können. Danach sind die Teilchenmassen deshalb so verschieden, weil Teilchen unterschiedlich stark an ein bis jetzt noch nicht gefundenes Teilchen, das Higgs-Boson, beziehungsweise dessen Feld koppeln. Daher hofft man, Higgsteilchen als Anregung des Higgsfeldes auf Grund ihrer vorausberechneten Zerfälle nachweisen zu können. Das dritte Problem ist die Vereinheitlichung der vier Grundkräfte, also eine Quantenfeldtheorie, die auch die Gravitation mit einbezieht. Es ist zwar nicht möglich diese Vereinheitlichung direkt zu beobachten, da sie erst auf Energieskalen weit jenseits der in absehbarer Zeit experimentell erreichbaren Energien geschieht, aber durch den Nachweis supersymmetrischer Partner der heute bekannten Elementarteilchen ließen sich die Kräfte in einem Punkt vereinigen. Der Nachweis einer Vereinheitlichung wäre ohne die vergleichsweise einfache Supersymmetrie nur schwer möglich. Deswegen soll ATLAS auch nach supersymmetrischen Teilchen fahnden.

Darüber hinaus soll am ATLAS-Detektor auch B-Physik betrieben werden. Dabei wird der Zerfall von B-Mesonen und ihrer Antiteilchen beobachtet. Wenn sich dabei Unterschiede in den Wahrscheinlichkeiten für bestimmte Zerfallskanäle zwischen Teilchen und Antiteilchen zeigen, wäre dies eine Verletzung der CP-Symmetrie. Solche CP-verletzende Prozesse sind Voraussetzung dafür, dass es im Universum, wie beobachtet, mehr Materie als Antimaterie geben kann. Man erwartet aber auch bisher unbekannte CP-verletzende Prozesse durch die Entdeckung neuer Teilchen, wie zum Beispiel die eben genannten supersymmetrischen Teilchen und das Higgs-Boson, zu finden. Neben diesen Hauptaufgaben ist der ATLAS-Detektor aber auch dahingehend ausgelegt ein weites Feld der Forschung abzudecken, wozu zum Beispiel QCD-Prozesse und Teilchen mit anormalen Quantenzahlen (Leptoquarks, Dileptonen, usw.) zählen.

Literatur

  • ATLAS Collaboration (Hrsg.): ATLAS Detector and Physics Performance. Technical Design Report, Volume 1, CERN/LHCC/99-14,25 May 1999 TDR Vol. I (pdf-Datei; 8,08 MB)
  • ATLAS Collaboration (Hrsg.): ATLAS Detector and Physics Performance. Technical Design Report, Volume 2, CERN/LHCC/99-15,25 May 1999 TDR Vol. II (pdf-Datei; 9,56 MB)
 
Dieser Artikel basiert auf dem Artikel ATLAS_(Detektor) aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.