Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
KläranlageEine Kläranlage, in der Schweiz und Österreich auch ARA (Abwasserreinigungsanlage) genannt, dient der Reinigung von Abwasser, das von der Kanalisation gesammelt und zu ihr transportiert wurde. Zur Reinigung der unerwünschten Bestandteile der Abwässer werden mechanische (auch physikalische genannt), biologische und chemische Verfahren eingesetzt. Moderne Kläranlagen sind dementsprechend dreistufig, wobei in jeder Reinigungsstufe eine Verfahrensart im Vordergrund steht. Die erste Kläranlage auf dem europäischen Festland wurde 1882 in Frankfurt am Main in Betrieb genommen.
Weiteres empfehlenswertes Fachwissen
Fließschema
AnlagenteileRegenentlastungWenn Regen- und Schmutzwasser in einem Kanal der Kläranlage zugeleitet werden (Mischsystem), muss das Kanalnetz in der Regel durch ein Regenentlastungssystem, in der Regel durch einen Regenüberlauf und/oder durch ein Regenüberlaufbecken entlastet werden, damit die Kläranlage nicht überlastet wird. Dies kann entweder bereits im Kanalnetz oder auch erst in der Kläranlage geschehen. Wenn keine derartigen Einrichtungen vorhanden sind, muss die Kläranlage eine höhere Leistung haben. Dem gegenüber steht das Trennsystem. Hier wird das Schmutzwasser in einer separaten Rohrleitung der Kläranlage zugeführt, während das Regenwasser durch einen eigenen Kanal, ggf. nach Reinigung in einem Regenklärbecken direkt zu einem Oberflächengewässer geleitet wird. RechenIn der Rechenanlage wird das Abwasser durch einen Rechen oder eine Siebtrommel geleitet. Im Rechen bleiben die groben Verschmutzungen wie Artikel der Monatshygiene, Präservative, Toilettenpapier, Wattestäbchen, Steine, aber auch Laub und tote Tiere hängen. Diese Grobstoffe würden erstens Pumpen auf der Kläranlage verstopfen und zweitens das Reinigungsergebnis optisch verschlechtern. Je schmaler der Durchgang für das Abwasser, desto weniger Grobstoffe enthält das Abwasser nach dem Rechen. Man unterscheidet Feinrechen mit wenigen mm und Grobrechen mit mehreren cm Spaltweite. Das Rechengut wird zum Entfernen der Fäkalstoffe maschinell gewaschen, mittels Rechengutpresse entwässert (Gewichtsersparnis) und anschließend verbrannt, kompostiert (Dünger) oder auf einer Deponie abgelagert. SandfangEin Sandfang ist ein Absetzbecken mit der Aufgabe, grobe, absetzbare Verunreinigungen aus dem Abwasser zu entfernen, so beispielsweise Sand, Steine, Glassplitter oder Gemüsereste. Diese Stoffe würden zu betrieblichen Störungen in der Anlage führen (Verschleiß, Verstopfung). Als Bauform ist ein
möglich. Die Belüftung des Sandfangs (am Beckenboden angebracht) erzeugt eine Wirbelströmung. Durch die eingeblasene Luft verringert sich die scheinbare Dichte des Abwassers. Aufgrund beider Effekte setzen sich die schweren vorwiegend mineralischen Feststoffe (hauptsächlich Sand) am Beckenboden ab. Beim Tiefsandfang strömt das Abwasser von oben in das Becken und erreicht durch dessen Tiefe eine relativ hohe Verweildauer, wodurch sich der schwerere Sand am Beckengrund (Sandtrichter) absetzt. Bei modernen Anlagen wird das Sandfanggut nach der Entnahme aus dem Sandfang gewaschen, also von organischen Begleitstoffen befreit, um eine bessere Entwässerung und anschließende Verwertbarkeit (beispielsweise im Straßenbau) zu ermöglichen. VorklärbeckenDas Schmutzwasser fließt langsam durch das Vorklärbecken. Ungelöste Stoffe (Fäkalien, Papier etc.) setzen sich ab (absetzbare Stoffe) oder schwimmen an der Oberfläche auf. Etwa 30 % der organischen Stoffe können damit entfernt werden. Es entsteht Primärschlamm, der bei den meisten Kläranlagen in den sogenannten Voreindicker kommt (siehe Schema oben). Zusammen mit dem überschüssigen Schlamm aus der aeroben Belebungsanlage wird er dort eingedickt: Der Schlamm setzt sich ab und das überschüssige Wasser (Trübwasser) wird abgezogen, und dem weiteren Reinigungsprozess der Kläranlage zurückgeführt. Der eingedickte Schlamm wird zur weiteren anaeroben Behandlung in den Faulturm gepumpt. Bei modernen Anlagen mit Stickstoffentfernung entfällt dieser Anlagenteil oft oder ist klein bemessen, da die organischen Stoffe des Abwassers als Reduktionsmittel zur Stickstoffentfernung mittels Denitrifikation (Reduktion des NO3- zu N2) im anoxischen Teil beziehungsweise der anoxischen Phase der biologischen Stufe benötigt werden. Ebenso wird dieser Anlagenteil bei Kläranlagen mit simultaner aerober Schlammstabilisierung in der biologischen Stufe nicht verwendet, da sonst weiterhin nicht stabilisierter Primärschlamm anfallen würde. Biologische StufeIn diesem Verfahrensteil werden durch Mikroorganismen die organischen Stoffe des Abwassers abgebaut und anorganische Stoffe teilweise oxidiert. Hierzu wird auch Luft (Sauerstoff) hineingepumpt. Hierzu wurden zahlreiche Verfahren entwickelt (zum Beispiel das Belebtschlammverfahren, das Tropfkörperverfahren, das Festbettreaktorverfahren). BelebtschlammverfahrenDer Großteil der kommunalen Kläranlagen in Mitteleuropa werden nach dem Belebtschlammverfahren betrieben. Damit werden in sogenannten Belebungsbecken durch Belüften des mit Belebtschlamm (Massen von flockig aggregierten Bakterien) versetzten Abwassers die Abwasserinhaltsstoffe des frischen Abwassers biotisch oxidativ abgebaut. Dabei werden von aeroben (Sauerstoff verbrauchenden) Bakterien und anderen Mikroorganismen Kohlenstoffverbindungen größtenteils zu Kohlenstoffdioxid abgebaut und teilweise zu Biomasse umgesetzt sowie der Stickstoff aus den organischen Verbindungen durch wieder andere Bakterien zunächst als Ammoniak abgespalten und dieses mit Sauerstoff zu Nitrat oxidiert (Nitrifikation). Das Belebtschlammverfahren wird mit kontinuierlichem Durchlauf betrieben, das heißt, in das Belebungsbecken läuft kontinuierlich Abwasser zu und kontinuierlich läuft im selben Maß Belebtschlamm enthaltendes Wasser ab. Durch die Zugabe von Fällmitteln kann mittels chemischer Reaktionen außerdem der Nährstoff Phosphor entfernt werden, ggf. durch Simultanfällung. Dies verbessert auch die Absetzeigenschaften des Belebtschlammes im Nachklärbecken. NachklärbeckenDas Nachklärbecken bildet eine Prozesseinheit mit dem Belebungsbecken. In ihm wird der Belebtschlamm durch Absetzen aus dem Abwasser abgetrennt. Ein Teil des Schlammes wird in das Belebungsbecken zurückgeführt (Rücklaufschlamm), um die Konzentration an Mikroorganismen im Belebungsbecken ausreichend hoch zu erhalten. Anderenfalls wäre die Abbauleistung darin zu niedrig. Der Überschuss (Zuwachs an Biomasse, Überschussschlamm) wird zur Weiterbehandlung in der Regel zusammen mit dem Schlamm des Vorklärbeckens in den Voreindicker abgeführt. Der Belebtschlamm muss gute Absetzeigenschaften aufweisen. Ist dies nicht der Fall, beispielsweise durch massenweises Wachstum fadenförmiger Mikroorganismen, was zur Blähschlammbildung führt, treibt der Belebtschlamm aus dem Nachklärbecken in das Gewässer ab, in das das gereinigte Abwasser eingeleitet wird (sogenannter Vorfluter). Damit wird nicht nur das Gewässer beeinträchtigt. Da dann nicht genug Schlamm im System Belebungsbecken/Nachklärbecken gehalten werden kann, sinkt die Reinigungsleistung und das Schlammalter (die mittlere Aufenthaltsdauer der Biomasse im System) nimmt ab. Zuerst sind daher von einem derartigen Versagen die langsam wachsenden Bakterien (beispielsweise die Nitrifikanten, die Ammoniak zu Nitrat oxidieren) betroffen. Besonders Abwässer mit leicht abbaubaren organischen Stoffen (beispielsweise aus der Lebensmittelindustrie) neigen zur Blähschlammbildung. Die Vorschaltung kleiner, nicht oder gering belüfteter Becken vor dem Belebungsbecken (Selektoren) kann die Blähschlammbildung vermeiden. Eine spezielle Form des Nachklärbeckens ist der trichterförmige Dortmundbrunnen. FestbettverfahrenBeim Festbettverfahren dienen verschieden geformte Festkörper als Grundlage zum Aufwuchs von Mikroorganismen, die die Schmutzstoffe abbauen. Diese Festkörper werden abwechselnd in Abwasser und Luft getaucht, damit die Mikroorganismen sowohl mit den Schmutzstoffen wie auch mit dem zu deren oxidativen Abbau erforderlichen Sauerstoff in Kontakt kommen. [1] FaulbehälterDer durch den Abbau der Abwasserinhaltsstoffe entstehende Biomassezuwachs wird als Klärschlamm beseitigt, meist aber in sogenannten Faulbehältern unter anaeroben (das heißt sauerstofffreien) Bedingungen durch anaerobe Bakterienstämme zu Faulschlamm und brennbarem Faulgas (im Wesentlichen ein Gemisch aus Methan und Kohlenstoffdioxid) abgebaut. Dieser Prozess entspricht dem der Erzeugung von Biogas in einer Biogasanlage. Die Faulbehälter sind oft turmförmig und werden dann als Faulturm bezeichnet (siehe Abbildung). Das Faulgas wird häufig in gereinigter Form (Entfernung zum Beispiel von Schwefelwasserstoff) in Gasmotoren (oder auch Blockheizkraftwerken) zur Deckung des Eigenbedarfs an Strom (und Wärme) genutzt. Der Faulschlamm wird anschließend in den sogenannten Nacheindicker (siehe obiges Schema) geleitet. Dort wird er durch Absetzen eingedickt, um das Volumen und den Wassergehalt weiter zu verringern. Mit speziellen, höhenverstellbaren Abzugsvorrichtungen wird das Trübwasser gezielt abgezogen. Der entstehende Schlamm kann, wenn er frei von Schadstoffen und Giften ist, in der Landwirtschaft als organische Düngung verwendet werden. Andernfalls wird er in Bandfilterpressen, Kammerfilterpressen oder Dekanterzentrifugen noch weiter entwässert und in Müllverbrennungsanlagen verbrannt oder auf Mülldeponien entsorgt. Reinigungsprozesse1. Stufe Mechanische Verfahren bilden zumeist die erste Reinigungsstufe. Hier werden etwa 20-30 % der festen (ungelösten) Schwimm- und Schwebstoffe entfernt. In der weitergehenden Abwasserreinigung und der Industriewasserwirtschaft werden unter anderem Adsorption, Filtration und Strippung eingesetzt. 2. Stufe Biologische Verfahren werden in der zweiten Reinigungsstufe kommunaler Abwasserreinigungsanlagen und für den Abbau organisch hochbelasteter Abwässer in der aeroben und anaeroben Abwasserreinigung eingesetzt. Sie verwenden mikrobiologische Abbauvorgänge. Dabei werden abbaubare organische Abwasserbestandteile möglichst vollständig mineralisiert, das heißt in der aeroben Abwasserreinigung bis zu den anorganischen Endprodukten Wasser, Kohlenstoffdioxid, Nitrat, Phosphat und Sulfat abgebaut. In der anaeroben Abwasserreinigung werden sie zu organischen Säuren, Methan und Kohlenstoffdioxid umgesetzt. Üblicherweise werden damit die Kohlenstoffverbindungen aus dem Abwasser entfernt. Ebenso erfolgt die Entfernung von organisch gebundenem Stickstoff und Ammonium durch bakterielle Nitrifikation und Denitrifikation. Zunehmend wird in mittleren und großen Kläranlagen auch der Phosphor bakteriell eliminiert. 3. Stufe Chemische Verfahren: Abiotisch-chemische Verfahren bedienen sich chemischer Reaktionen wie Oxidation und Fällung ohne Beteiligung von Mikroorganismen. Sie dienen in der kommunalen Abwasserreinigung vor allem der Entfernung von Phosphor durch Fällungsreaktionen. Dieser Prozess hat große Bedeutung zur Vermeidung der Eutrophierung der Vorfluter. Zudem werden abiotisch-chemische Verfahren zur Fällung in der Industriewasserwirtschaft und zur weitergehenden Abwasserreinigung (beispielsweise Flockung/Fällung/Filtration) eingesetzt. Die Prozesse in Kläranlagen können mathematisch durch ihre Reaktionskinetik (Makrokinetik) beschrieben werden.
BelastungskenngrößenDie Belastung von Kläranlagen wird nach Einwohnerwerten (EW) bestimmt. Dabei handelt es sich um die Summe aus den tatsächlichen Einwohnern (Einwohnerzahl, EZ) und den Einwohnergleichwerten (EGW). Der Einwohnergleichwert ist die Vereinbarungsgröße der für einen "Standardeinwohner" anzusetzenden Emission an Abwasser. Für gewerbliche, industrielle und landwirtschaftliche Produktion werden auf Produktionsgrößen bezogenen Belastungen (beispielsweise 10 EW BSB5 pro ha Weinbaufläche) angegeben. Zu beachten ist jedoch, dass sich die Verhältnisse zwischen den einzelnen Parametern verschieben können. Abwässer können höher konzentriert sein (weniger Abwassermenge bei gleicher Schmutzfracht), oder sie können beispielsweise reich an organischen Kohlenstoffverbindungen und dafür nährstoffarm sein. Der Gehalt an biotisch abbaubaren Stoffen wird mit dem Summenparameter Biochemischer Sauerstoffbedarf, abgekürzt BSB, quantifiziert. In der Regel wird er mit dem biochemischen Sauerstoffverbrauch in Milligramm innerhalb von 5 Tagen unter Standardbedingungen gemessen und als BSB5 bezeichnet (siehe unten). Für den biotischen Abbau muss ein Nährstoffverhältnis von BSB5:N:P von etwa 100:5:1 gegeben sein, um die Mikroorganismen ausreichend mit Stickstoff und Phosphor zu versorgen. Dies fußt auf der Annahme, dass etwa 50 % der abgebauten organischen Stoffe zum Biomassewachstum verwendet werden und Biomasse zu etwa 10 % aus Stickstoff und zu etwa 2 % aus Phosphor besteht. Ein Einwohnerwert, abgekürzt EW, entspricht folgenden Größen: AbwassermengeAls Belastung der Kläranlage mit Abwasser wurde früher ein Schmutzwasseranfall von 150 bis 200 Liter pro Einwohner und Tag angesetzt. Der Schmutzwasseranfall entspricht etwa dem Wasserverbrauch. Für Neuplanungen oder Vorausplanungen wird inzwischen der ortsspezifische Wasserverbrauch ermittelt und eine Abschätzung für die Zukunft versucht. Üblicherweise werden Schmutzwassermengen um die 130 Liter pro Einwohner und Tag angesetzt. Dieser Wert berücksichtigt die in Mitteleuropa bei dichten Kanalnetzen üblichen Werte. Für die Bemessung der Kläranlage wird jedoch in der Regel ein Zuschlag für Fremdwasser (undichte Kanäle, Einleitungen von Drainagen und dergleichen) berücksichtigt. Dieser kann bis 100 % des Schmutzwasseranfalls betragen. Die Fremdwassermenge wird auf die angeschlossene versiegelte Fläche bezogen und sollte nicht mehr als 0,15 l/(s*ha) betragen. Bei Mischkanalisationen (Regenwasser und Schmutzwasser in einem Kanal) sind entsprechende Zuschläge zur Abarbeitung des Regenwassers zu berücksichtigen, die meist mit 100 % der Tagesspitze bei Trockenwetter angesetzt werden. Für die hydraulische Berechnung (Zahl und Größe der Förderpumpen) der Kläranlage ist zudem der Tagesgang der Belastung von Bedeutung. Die durchschnittliche Tagesfracht ist daher zur Bemessung nicht durch 24 Stunden, sondern durch eine kleinere Zahl (10 bis 14) für den maximalen Stundenwert zu teilen. VerschmutzungsgradBSB5Beim BSB5-Wert, dem biochemischen Sauerstoffbedarf während einer Messzeit von 5 Tagen unter Standardbedingungen, wird jener Sauerstoffbedarf erfasst, der durch die Oxidation von organischen Stoffen durch aerobe Mikroorganismen entsteht. Er gehört zu den so genannten Summenparametern, da damit nicht der Abbau von Einzelverbindungen bestimmt werden kann. Als üblicher Wert für den BSB5 werden 60 g pro EW und Tag angesetzt. Davon können etwa 20 g in der Vorklärung durch Sedimentation entfernt werden. Chemischer SauerstoffbedarfDer chemische Sauerstoffbedarf, abgekürzt auch CSB, gehört ebenfalls zu den so genannten Summenparametern, da damit keine Einzelverbindungen quantifiziert werden können. Er wird mittels der Oxidation der Abwasserinhaltsstoffe durch Kaliumdichromat bestimmt und erfasst den Sauerstoffbedarf zur Oxidation eines Großteils der organischen Stoffe. Sind im Abwasser auch oxidierbare anorganische Verbindungen wie beispielsweise Sulfite enthalten, werden diese ebenfalls als CSB erfasst. Für den CSB wird ein Wert von 120 g pro EW und Tag angesetzt. StickstoffStickstoff liegt im Rohabwasser hauptsächlich organisch gebunden (zum Beispiel in Proteinen, Nukleinsäuren, Harnstoff) und in Form von Ammonium-Ionen (NH4+) sowie in geringen Anteilen auch in Form von Nitrat- (NO3-) und Nitrit-Ionen (NO2-) vor. Angesetzt werden hier etwa 10 bis 12 g pro EW und Tag. PhosphorPhosphor liegt organisch als Phosphatgruppe gebunden und als freies Phosphat vor. Hier werden etwa 1,8 g pro EW und Tag angenommen. Siehe auch
Quellen
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dieser Artikel basiert auf dem Artikel Kläranlage aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |