Meine Merkliste
my.chemie.de  
Login  

Chromosom



      Chromosomen (von griechisch: χρῶμα =Chroma, „Farbe“ und σῶμα = Soma, „Körper“, also „Farbkörper“) sind Strukturen, die Gene und damit Erbinformationen enthalten. Sie bestehen aus DNA, die mit vielen Proteinen verpackt ist. Diese Mischung aus DNA und Proteinen wird auch als Chromatin bezeichnet.

Chromosomen kommen in den Zellkernen der Zellen von Eukaryoten (Lebewesen mit Zellkern) vor, zu denen alle Tiere, Pflanzen und Pilze gehören. Prokaryoten (Lebewesen ohne Zellkern), also Bakterien und Archaeen, besitzen keine Chromosomen im klassischen Sinn, sondern ein oder mehrere, meist zirkuläre DNA-Moleküle, die manchmal als „Bakterienchromosom“ bezeichnet werden, obwohl diese mit den eukaryotischen Chromosomen nicht viel gemein haben. Fast alle Gene der Eukaryoten liegen auf den Chromosomen. Einige wenige liegen auf DNA in den Mitochondrien und bei Pflanzen auch in den Chloroplasten. In den Mitochondrien und Chloroplasten der Eukaryoten ist die DNA ebenfalls ringförmig, ähnlich dem Bakterienchromosom.

Die X-ähnliche Form der Chromosomen, die in den meisten Darstellungen vorherrscht, tritt nur in einem kurzen Abschnitt während der Zellkernteilung (Mitose) auf, nämlich in der Metaphase (siehe erste Abbildung). In diesem kondensierten Zustand sind die Chromosomen im Lichtmikroskop ohne besondere Anfärbung erkennbar. Zwischen Kernteilungen, in der Interphase, existieren Chromosomen im Zellkern in einem „entspannten“, dekondensierten Zustand, in dem sie nur durch die Anwendung einer speziellen Nachweistechnik (Fluoreszenz in situ Hybridisierung) als getrennte Einheiten nachweisbar sind. Nur in diesem dekondensierten Zustand kann die DNA abgelesen und dupliziert werden. In der Interphase nimmt jedes Chromosom im Zellkern einen abgegrenzten Bereich ein, ein Chromosomenterritorium (siehe Abbildungen).

Inhaltsverzeichnis

Geschichte

Der Name Chromosom wurde 1888 vom Anatomen Heinrich Wilhelm Waldeyer vorgeschlagen, nachdem Walther Flemming einige Jahre zuvor „Chromatin“ für die färbbare Substanz im Zellkern eingeführt hatte. Noch 1906 nutzte Oscar Hertwig parallel dazu den Begriff „Kernsegmente“, welcher verdeutlichen sollte, dass bei der Teilung des Kerns (Mitose) „das Chromatin in Segmente zerlegt wird“. Eine weitere alte Bezeichnung, die ebenfalls eine Weile parallel zu „Chromosom“ benutzt wurde, ist „Kernschleife“, zum Beispiel bei Karl Heider (1906)

Die Geschichte der Entdeckung der Chromosomen und ihrer Funktion lässt sich nicht von der vorangegangenen Entdeckung des Zellkerns trennen (siehe zuerst dort).

1843 beschrieb Carl Wilhelm von Nägeli „transitorische Zytoblasten“, bei denen es sich vermutlich um Chromosomen handelte, erkannte jedoch nicht ihre Bedeutung. Auch Abbildungen aus den Werken anderer Forscher lassen sich mit heutigem Wissen als Chromosomen bzw. mitotische Zellteilung deuten (Matthias Schleiden, 1846; Rudolf Virchow, 1857; Otto Bütschli, 1873).

1873 beschrieb Anton Schneider an Plathelminthen, dass der Zellkern sich „in einen Haufen feinlockig gekrümmter, auf Zusatz von Essigsäure sichtbar werdender Fäden verwandelt. An Stelle dieser dünnen Fäden traten endlich dicke Stränge auf, zuerst unregelmäßig, dann zu einer Rosette angeordnet, welche in einer durch den Mittelpunkt der Kugel gehenden Ebene (Äquatorialebene) liegt.“ Die indirekte Kernteilung war entdeckt – aber noch nicht verstanden. So ging Walther Flemming 1882 noch davon aus, dass sich die „Kernfäden“ erst während der frühen Phase der Kernteilung aus einem zuvor durchgehenden Faden voneinander trennen. Zwar beobachtete er eine Längsspaltung der Chromosomen zu einem späteren Zeitpunkt (heute als Metaphase bezeichnet), nahm aber an, dass sich das gesamte Chromosom (also mit beiden Chromatiden) später (heute: Anaphase) in Richtung eines Spindelpols bewegte. Auch schloss er nicht aus, dass sich Zellkerne zumindest in manchen Fällen auch neu bilden könnten, also nicht durch Teilung aus bestehenden Kernen. Beides zusammen macht deutlich, dass die Bedeutung der Chromosomen für die Vererbung noch nicht erkannt wurde.

  Diese Bedeutung wurde kurz darauf von Wilhelm Roux (1883) vorgeschlagen. Aus der Kompliziertheit der Vorgänge bei der Kernteilung (statt einer einfachen Durchschnürung) in Kombination mit einem aus evolutionstheoretischer Sicht erforderlichen Selektionsvorteil folgerte er, dass eine sehr gleichmäßige Verteilung des Chromatins auf die Tochterzellen außerordentlich wichtig sei und dass diese Wichtigkeit nur darin begründet sein könne, dass das Chromatin eine „ungemeine Mannigfaltigkeit … an Qualitäten“ haben müsse. Diese von ihm postulierte „komplizierte Zusammensetzung des Chromatins“ können wir heute problemlos mit dem Vorhandensein der Gene erklären. Im Folgejahr wurde von mehreren Autoren (L. Guignard, Emil Heuser und Edouard van Beneden) die Aufteilung der Tochterchromatiden auf die Tochterzellkerne beschrieben.

Da die Chromosomen während der Interphase nicht sichtbar waren, war zunächst unklar, ob sie sich nach einer Kernteilung auflösten und vor jeder Kernteilung neu bildeten, oder ob sie im Kern als jeweils eigene Einheiten überdauerten. Letztere Idee wurde als Lehre von der Erhaltung der Individualität der Chromosomen bezeichnet und von Carl Rabl vorgeschlagen (1885). Er war der erste, der erstens eine konstante Zahl von Chromosomen in verschiedenen Mitosen eines Gewebes feststellte und zweitens daraus schloss, dass die Chromosomen auch in der Interphase und somit kontinuierlich vorhanden sein müssten. Er ließ aber zunächst noch die Möglichkeit offen, dass diese Zahl in verschiedenen Geweben unterschiedlich sein könnte. Rabl war ebenfalls der erste, der annahm, dass jedes Chromosom im Interphasekern ein eigenes Territorium bildet.

Die Idee der Chromosomenkontinuität fand keineswegs ungeteilte Zustimmung. Ein wichtiger Gegner war Oscar Hertwig (1890, 1917). Theodor Boveri dagegen befürwortete Rabls Ideen und unterstützte sie mit weiteren experimentellen Befunden (1904, 1909). Ebenfalls in den 80er Jahren des 19. Jahrhunderts entwickelte August Weismann seine Keimplasmatheorie (siehe auch dort), bei der er davon ausging, dass das Erbmaterial (nur) in den Chromosomen lokalisiert sei. Wichtige Schlussfolgerungen waren, dass Vererbung ausschließlich über die Keimbahn stattfände, und dass eine Vererbung erworbener Eigenschaften abzulehnen sei. Was sich später als weitgehend richtig erwies war damals heftig umstritten. Eine schonungslose Kritik findet sich beispielsweise in „Meyers Konversationslexikon von 1888“ unter dem Stichwort Erblichkeit (online hier).

Im Jahr 1900 wurden die Mendel’schen Regeln wiederentdeckt und bestätigt, in der Folge entwickelte sich die neue Wissenschaft der Genetik, in deren Rahmen der Zusammenhang von Chromosomen und Vererbung vielfach gezeigt wurde. Beispielsweise konnte Thomas Hunt Morgan 1910 an Drosophila melanogaster den Nachweis führen, dass die Chromosomen die Träger der Gene sind. 1944 zeigte Oswald Avery (siehe dort), dass das eigentliche Erbmolekül die DNA ist, und nicht etwa Proteine in den Chromosomen.

Die weitere Geschichte bis 1950 (Aufklärung der Struktur der DNA) ist im Artikel Chromosomentheorie der Vererbung beschrieben. Eine Zeittafel einiger wichtiger Entdeckungen ist im Artikel Chromatin zu finden.

Im Jahr 2000 haben zwei internationale Wissenschaftlerteams das menschliche Erbgut weitgehend entziffert, im Jahr 2003 waren 99 Prozent sequenziert. Mit dem Chromosom 1 wurde 2005/06 das letzte der 24 verschiedenen menschlichen Chromosomen genau analysiert (99,99 %). Über 160 Wissenschaftler aus Großbritannien und den USA publizierten diese Gemeinschaftsarbeit [1].

Aufbau und Struktur der Chromosomen

Bestandteile

    Im einfachsten Fall enthält ein Chromosom einen durchgehenden DNA-Faden, an den Histone und andere Proteine angelagert sind (siehe unten). Der DNA-Faden wird manchmal auch als DNA-Molekül bezeichnet, obwohl es sich bei der vorliegenden DNA-Doppelhelix strenggenommen um zwei Einzelstrang-Moleküle handelt (siehe Desoxyribonukleinsäure). Eindeutige Bezeichnungen sind DNA-Doppelstrang oder DNA-Doppelhelix. Der beschriebene Fall mit einem DNA-Doppelstrang pro Chromosom tritt immer direkt nach einer Kernteilung auf; bei den meisten Tieren und Pflanzen zusätzlich in allen Zellen, die sich nicht mehr teilen können (Ausnahme: Polytänchromosomen bei Insekten, siehe auch unten) und in Zellen, die zeitweilig nicht mehr wachsen, sich also in der G0-Phase befinden (siehe Zellzyklus). Im beschriebenen Fall besteht das ganze Chromosom aus einem Chromatid.

Wenn eine Zelle wächst um sich später zu teilen, dann muss in einem bestimmten Abschnitt des Zellzyklus (S-Phase) die DNA verdoppelt („repliziert“) werden. Dies ist erforderlich, damit später beide Tochterkerne das ganze Erbgut, also Kopien aller Chromosomen, erhalten können. Nach der DNA-Verdopplung hat jedes Chromosom zwei identische DNA-Doppelstränge. Diese beiden Doppelstränge werden räumlich getrennt voneinander mit Proteinen verpackt: Zwei Schwester-Chromatiden entstehen. Während der Kernteilung (Mitose) werden die beiden Schwester-Chromatiden eines Chromosoms als zwar parallel verlaufende aber durch eine schmale Lücke getrennte Einheiten mikroskopisch sichtbar (siehe Schemazeichnung rechts und erste Abbildung des Artikels). An einer Stelle, die Centromer oder Zentromer genannt wird, ist jedes Chromosom zu diesem Zeitpunkt schmaler als im sonstigen Verlauf: Hier hängen die Schwester-Chromatiden noch zusammen. Im weiteren Verlauf der Mitose (am Übergang von der Metaphase zur Anaphase, siehe unten) werden die beiden Schwester-Chromatiden getrennt und auf die neu entstehenden Zellkerne verteilt: Die Chromosomen in diesen neuen Kernen bestehen jetzt wieder aus einem Chromatid. Demnach enthält ein Chromatid immer genau einen DNA-Doppelstrang während ein Chromosom je nach Phase des Zellzyklus ein oder zwei DNA-Doppelstränge enthält und entsprechend aus einem oder zwei Chromatiden besteht. (Ausnahme: Die erwähnten Polytänchromosomen, die über Tausend Doppelstränge enthalten können.)

Durch das Centromer werden die Chromatiden in zwei Arme unterteilt. Je nach Lage des Centromers spricht man von metazentrischen (Centromer in der Mitte), akrozentrischen (am Ende, der kürzere Arm sehr klein) oder submetazentrischen (zwischen Mitte und Ende) Chromosomen. Der kürzere Arm wird als p-Arm (petite, französisch für klein), der längere als q-Arm bezeichnet. Wie in der Schemazeichnung werden Chromosomen generell mit den kurzen Armen nach oben dargestellt.

Die Enden der Chromosomen heißen Telomere (Einzahl: Telomer). Sie enthalten eine kurze, sich identisch wiederholende DNA-Sequenz (beim Menschen TTAGGG). Dort werden die Chromosomen bei jeder Verdopplung ein wenig kürzer. Die Telomere spielen daher bei Alterungsprozessen eine wichtige Rolle. Neben Centromer und Telomeren sind Startpunkte für die DNA-Verdopplung (Replikation) der dritte essentielle Bestandteil eines Chromosoms (siehe ARS-Element).

Beim Menschen enthalten die kurzen Arme der akrozentrischen Chromosomen Gene für die ribosomale RNA. Diese kurzen Arme können in kondensierten Metaphasechromosomen durch einen Satelliten verlängert sein, so dass Satellitenchromosomen (SAT-Chromosomen) vorliegen (nicht zu verwechseln mit Satelliten-DNA). Die Gene für die ribosomale RNA liegen in vielen, tandem-artig hintereinander liegenden Kopien vor. Im Interphase-Zellkern bildet sich an diesen der Nucleolus. Daher werden sie auch als Nucleolus organisierende Regionen (NOR) bezeichnet.

Chromosomen während der normalen Kernteilung (Mitose)

Dieser Abschnitt enthält eine kurze Darstellung der Vorgänge während der Mitose. Ausführlicher werden diese im eigenen Artikel Mitose wiedergegeben.

  • Prophase: In diesem ersten Stadium der Mitose kondensieren die Chromosomen zunehmend. Sie werden so von einer zugänglichen Quelle genetischer Information zu einer nicht mehr ablesbaren, kompakten Transportform. Die Kernmembran wird aufgelöst. Dies wird manchmal als der Beginn einer zusätzlichen Phase, der Prometaphase gesehen.
  • Metaphase: Die Chromosomen wandern in die Äquatorialebene der Zelle und bilden dort die Metaphaseplatte. Bis zu diesem Zeitpunkt besteht jedes Chromosom aus zwei Chromatiden.
  • Anaphase: Der Spindelapparat sorgt für die Trennung der Chromatiden jedes Chromosoms und ihren Transport senkrecht weg von der Metaphaseplatte, zu zwei entgegengesetzten Zellpolen. Dazu werden Mikrotubuli sowohl an den Kinetochoren der Centromere als auch an den Zellpolen befestigt.
  • Telophase: Nach Abschluss der Anaphasebewegung wird die Kernhülle um die Chromosomen neu gebildet. Die Dekondensation beginnt. Der neu entstehende Zellkern enthält nun Ein-Chromatid-Chromosomen.

Nach der Kernteilung erfolgt in der Regel die Zellteilung, die Cytokinese oder Zytokinese, die aber nicht mehr zur Mitose gerechnet wird.

 


G-, R- und andere Chromosomenbanden

 

In der Mitte des 20. Jahrhunderts wurden Techniken entwickelt, um die Chromosomen aus Zellen, die sich in der Metaphase befinden, zu „spreiten“: Im entstandenen Metaphasepräparat liegen die Chromosomen einer Zelle nebeneinander auf einem Objektträger, so dass sie im Mikroskop abgezählt und miteinander verglichen werden können (siehe erste Abbildung oben). In gut gelungen Präparaten haben die einzelnen Chromosomen dabei die häufig dargestellte X-ähnliche Form. Mit den klassischen Färbemethoden wie zum Beispiel Giemsa-Färbung werden Chromosomen auf ganzer Länge gleichmäßig eingefärbt. Daher war es zunächst nicht oder nur schwer möglich, Chromosomen ähnlicher Größe sicher voneinander zu unterscheiden. Um 1970 wurde entdeckt, das einige Bereiche der Chromosomen den Giemsa-Farbstoff nicht mehr annehmen, wenn die Chromosomen zuvor mit Trypsin behandelt wurden. Durch die hervorgerufene G-Bänderung entstanden entlang der Chromosomen abwechselnd gefärbte (die G-Banden, G für Giemsa) und ungefärbte Abschnitte (die R-Banden, R für revers). Durch das Bandenmuster ist beim Menschen und etlichen Tieren eine eindeutige Identifizierung aller Chromosomen möglich. Die stoffliche Grundlage für das unterschiedliche Färbeverhalten der Banden, also die Frage warum einige Bereiche nach der Trypsinbehandlung den Farbstoff nicht mehr aufnehmen, ist bis heute ungeklärt. Es stellte sich jedoch heraus, das G- und R-Banden sich in einigen Eigenschaften unterscheiden.

  R-Banden enthalten überdurchschnittlich viele Gene, überdurchschnittlich viele G-C Basenpaarungen und werden während der Replikation der Chromosomen früh verdoppelt. Beim Menschen sind sie reich an Alu-Sequenzen (siehe dort und Abbildung rechts).

G-Banden sind genarm, die Anzahl der G-C Basenpaare liegt unter dem Durchschnitt, (dafür haben sie mehr A-T Paare; siehe Desoxyribonucleinsäure) und sie werden während der Duplizierung der Chromosomen eher spät repliziert. Beim Menschen sind sie reich an L1-Elementen (siehe LINE (Genetik)).

Als weitere Bandentypen werden manchmal C-Banden (die Centromerregionen) und T-Banden unterschieden. Letztere sind eine Untergruppe der R-Banden, besonders genreich und liegen häufig in der Nähe der Telomere, daher der Name.

Die Anzahl der R- und G-Banden ist abhängig vom Kondensationsgrad der Chromosomen. In der Metaphase haben alle menschlichen Chromosomen zusammen etwa 400 dieser Banden, während in den noch nicht so stark kondensierten Prophasechromosomen bis zu 850 Banden unterschieden werden können.

  Nomenklatur: Um eine genaue Bezeichnung aller chromosomalen Regionen zu ermöglichen, wurden für den Menschen und einige andere Organismen standardisierte Bezeichnungssysteme eingeführt. Beim Menschen hat jede Bande eine Bezeichnung, die sich aus folgenden Elementen zusammensetzt: Nummer des Chromosoms, p oder q für den jeweiligen Arm sowie Zahlen, die vom Centromer aus aufwärts zählen. Zur feineren Unterscheidung können die Zahlen mehrere Stellen haben. Die Bande 3q26.31 ist demnach eine Unterbande von 3q26. Die Bezeichnung „3q“ steht entsprechend für den gesamten langen Arm des Chromosoms 3. Centromerregionen werden auch mit c bezeichnet (3c). Telomerbereiche werden der Einfachheit halber gerne mit tel (etwa 3ptel oder 3qtel) und telomernahe Bereiche mit ter (3pter) bezeichnet. Schematische Darstellungen der Standardbanden heißen Idiogramme. Beispiele sind in der Abbildung rechts und auf der Website von Ensembl[2] zu sehen. In Idiogrammen sind G-Banden stets dunkel, R-Banden weiß eingezeichnet. Bereiche aus repetitiven Elementen werden manchmal schraffiert dargestellt. Eine sortierte Anordnung aller mitotischen Chromosomen aus einer Zelle wird als Karyogramm bezeichnet (Abbildung weiter unten). Der Karyotyp eines Lebewesens gibt an, wie viele und gegebenenfalls welche Chromosomen dieses Individuum hat. Der Karyotyp einer Frau wird als 46,XX angegeben, der eines Mannes als 46,XY (siehe unten, Geschlechtsbestimmung)

Größe und Gendichte

Das menschliche Genom, also die Gesamtlänge der DNA, umfasst etwa 3,2 Gbp (=Gigabasenpaare oder Milliarden Basenpaare) mit bisher gefundenen 23700 Genen[2]. Menschen haben zwei Kopien des Genoms (2n), eine von der Mutter und eine vom Vater, die in jedem Zellkern vorliegen. Aus dem Molekularmodell der DNA ergibt sich für 10 Basenpaare in der Doppelhelix eine Länge von 3,4 Nanometern (Milliardstel Metern). Daraus lässt sich hochrechnen, dass die Gesamtlänge der DNA in jeder menschlichen Zelle über 2 Meter beträgt. Diese sind beim Menschen auf 2n = 46 Chromosomen verteilt, so dass ein Chromosom durchschnittlich etwa 140 Mbp (=Megabasenpaare, Millionen Basenpaare) und damit einen DNA-Faden von knapp 5 cm Länge mit etwas über 1000 Genen enthält. Chromosomen während der Kernteilung haben jedoch nur eine Länge von einigen Mikrometern (Millionstel Metern). Sie sind demnach um einen Faktor von etwa 10000 verkürzt oder „kondensiert“. Auch im Interphasekern sind Chromosomen kaum länger. Die hier vorhandenen Chromosomenterritorien entstehen im Wesentlichen durch Dekondensation der Tochterchromatiden in die Breite. Während ein Tochterchromatid in der Metaphase einen Durchmesser von etwa 0,6 Mikrometern hat, kann ein Chromosomenterritorium einen Umfang einnehmen, der etwa seiner Länge entspricht. Chromosomenterritorien können jedoch sehr unregelmäßige Formen haben. Aus den angegebenen Zahlenwerten wird deutlich, dass Chromosomen auch während der Interphase stark kompaktiert, also aufgefaltet, sein müssen (siehe nächstes Kapitel).

Chromosom 1 als größtes menschliches Chromosom hat 247 Mbp, das kürzeste Chromosom 21 hat weniger als ein Fünftel davon, nämlich 47 Mbp. Die Gene sind zwischen den Chromosomen ungleichmäßig verteilt. Das relativ genreichste Chromosom 19 enthält auf 64 Mbp über 3000 Gene, während das genarme Chromosom 18 auf 76 Mbp nur etwa 600 Gene enthält (siehe auch Abbildung „genarme und genreiche Regionen“ oben). Am genärmsten ist jedoch das Y-Chromosom, das auf 58 Mbp nur etwa 200 Gene enthält. (Größen und Gendichten in diesem Abschnitt von [2], Stand September 2006).

Bei der Hausmaus (Mus musculus) sind die Unterschiede zwischen den Chromosomen kleiner. Das 2.6 Gbp große Genom mit 24400 beschriebenen Genen ist verteilt auf 20 verschiedene Chromosomen (2n=40) zwischen 197 Mbp (Chromosom 1) und 61 Mbp (Chromosom 19) bzw. 16 Mbp (Y-Chromosom)[3].

Die Länge der einzelnen Chromosomen bei anderen Säugern schwankt stark, in Abhängigkeit von der Anzahl. Einige haben wenige, große Chromosomen (z. B. der indische Muntjak, (Muntjak muntjacus) 2n=6 beim Weibchen und 2n=7 beim Männchen), andere viele kleine (z. B. beim Nashorn, (Diceros bicornis) 2n=84). Die genauen Längen in Basenpaaren sind jedoch erst bei einer kleinen Anzahl von Tieren bekannt.

 

Bei Eidechsen und Vögeln treten Chromosomen von extrem unterschiedlicher Größe auf (siehe Abbildung). Die Makrochromosomen ähneln dabei von der Größe her Säugerchromosomen. Das Chromosom 1 des Huhns (Gallus gallus) enthält beispielsweise 188 Mbp. Daneben gibt es aber auch viele Mikrochromosomen, deren Größe 1 Mbp noch unterschreiten kann[4]. Der Übergang von Makro- zu Mikrochromosomen ist oft fließend, so dass die Abgrenzung beider Gruppen voneinander zum Teil unterschiedlich vorgenommen wird. Beim Huhn können die Makrochromosomen z. B. die Chromosomen 1–8 oder 1–10 umfassen. Für einen bildlichen Größenvergleich siehe Ensembl[4]. Von dort sind auch die Größen in Mbp übernommen. Die Begriffe Makro- und Mikrochromosomen wurden von Theophilus S. Painter 1921 eingeführt, der die Spermatogenese in Eidechsen untersuchte[5].

Molekularer Aufbau und Hierarchie der Verpackungsebenen

   

Im vorherigen Abschnitt wird dargelegt, dass die DNA sowohl während der Kernteilung als auch in der Interphase sehr stark aufgewickelt oder „kondensiert“ sein muss. Es ist jedoch noch weitgehend unklar, wie diese Verpackung organisiert ist. Eine wichtige Rolle spielen basische Strukturproteine, die Histone. DNA, Histone und weitere Proteine machen jeweils etwa ein Drittel der chromosomalen Masse aus. Diese wird auch als Chromatin bezeichnet. Die Verwendung des Begriffs Chromatin ist besonders für Beschreibungen des Zellkerns in der Interphase üblich, da hier einzelne Chromosomen nicht ohne spezielle Anfärbung (Fluoreszenz in situ Hybridisierung) voneinander unterschieden werden können.

Auf der untersten Verpackungsebene ist der DNA-Faden in Nucleosomen aufgewickelt, welche acht Histonenmoleküle enthalten (siehe Abb., Unterabbildung (2)). Nucleosomen haben einen Durchmesser von etwa 10 Nanometern (nm), daher spricht man hier auch von der 10 nm Fiber. Deren Struktur wird oft mit einer Perlenkette verglichen, bei der der Faden allerdings um die Perlen herumgewickelt ist. In einem Nucleosom sind 146 Basenpaare der DNA aufgewickelt, hinzu kommt Linker-DNA zwischen den Nucleosomen. Die 10 nm Fiber lässt sich im Elektronenmikroskop nachweisen, ebenso wie die nächsthöhere Verpackungsebene, die 30 nm Fiber. Die interne Struktur der 30 nm Fiber, also wie diese durch Auffalten aus der 10 nm Fiber zusammengesetzt ist, ist jedoch bereits unklar, genau wie alle höheren Verpackungsebenen. Für letztere werden verschiedene Modelle diskutiert. Im Loop Modell (von engl. loop = Schlaufe) wird angenommen, dass die 30 nm Fiber in großen Schlaufen verläuft, die an einer Art Rückgrat befestigt sind. Im Chromonema Modell wird dagegen angenommen, dass sich die 30 nm Fiber durch weiteres Auffalten verdickt und so Abschnitte von 120 nm und dicker entstehen [6]. Wie die strukturelle Veränderung vom Interphasezustand zum Prophasechromosom vor sich geht ist ebenfalls unklar. Beim Übergang der Prophasechromosomen zu den noch stärker kondensierten Metaphasechromosomen scheint Einigkeit darin zu bestehen, dass es sich hier um ein spiralförmiges Aufwickeln handelt.

Die Kondensation der Chromosomen bzw. des Chromatins ist innerhalb des Zellkerns nicht gleichmäßig. Manche Bereiche des Kerns werden durch DNA-Farbstoffe besonders stark gefärbt. Hier ist die Kondensation also besonders stark. Diese Bereiche werden als Heterochromatin bezeichnet, weniger stark gefärbte dagegen als Euchromatin.

Riesenchromosomen

Es sind zwei Arten von Riesenchromosmen bekannt, Polytänchromosomen und Lampenbürstenchromosomen.

Polytänchromosomen

Eine Besonderheit bezüglich des inneren chromosomalen Aufbaus stellen die Polytänchromosmen dar. Sie sind aus verschiedenen Insekten bekannt und besonders gut in der Fruchtfliege Drosophila melanogaster und in Chironimus untersucht. Sie entstehen durch mehrere Runden von Verdopplung der DNA ohne anschließende Kernteilung (Endoreduplikation). Im Gegensatz zur „normalen“ Polyploidie sind in Polytänchromosomen die vielfach replizierten DNA-Fäden von beiden homologen Chromosomen (also der vom Vater und der von der Mutter vererbten Kopie) parallel angeordnet, ähnlich einem Kabelstrang. Alle Kopien eines Gens liegen daher nebeneinander. Polytänchromosomen sind im Artikel Riesenchromosom genauer beschrieben.

Lampenbürstenchromosomen

Eine andere Form von sehr großen Chromosomen kommt in den Eizellen von Amphibien vor. Da sie vom mikroskopischen Bild her einer Flaschen- oder Lampenbürste ähneln, wurden sie Lampenbürstenchromosomen genannt. Sie sind in einem eigenen Artikel beschrieben.

Polytänchromosomen in einer Speicheldrüsenzelle von Chironimus. Walther Flemming, 1882.
„Chromatischer Faden, welcher einer Flaschenbürste vergleichbar ist“ (nach heutiger Terminologie ein Lampenbürstenchromosom) aus dem Kern einer Eizelle des Wassersalamanders (Triton). Klicken Sie hier um die gesamte Tafel zu sehen. Oscar Hertwig, 1906.

Geschlechtsbestimmung durch Chromosomen und ihre Folgen

Geschlechtsbestimmung

Während bei manchen Tierarten die Geschlechtsbestimmung durch Umweltbedingungen wie Temperatur während der Embryonalentwicklung erfolgt (z. B. Krokodile), wird es bei anderen durch die geerbten Chromosomen bestimmt: Sie haben ein chromosomales Geschlecht. Verschiedene Tiergruppen haben unterschiedliche Methoden der chromosomalen Geschlechtsbestimmung hervorgebracht, teilweise sind ähnliche Systeme unabhängig voneinander entwickelt worden[7].

  Säugetiere und damit auch Menschen, jeweils einige Eidechsen, Amphibien und Fische sowie die Fruchtfliege Drosophila melanogaster haben ein XY/XX-System: Weibchen haben zweimal das gleiche Geschlechtschromosom (=Gonosom), nämlich zwei X-Chromosomen. Sie sind daher bezüglich der Gonosomen homozygot. Männchen haben dagegen ein X-Chromosom und ein Y-Chromosom. Diesen Zustand nennt man hemizygot. Von der Mutter wird also immer ein X-Chromosom weitergegeben, vom Vater entweder ein X- oder ein Y-Chromosom. Alle anderen Chromosomen, die Autosomen, sind in jeweils zwei Kopien vorhanden. Für Menschen konnte anhand von Patienten mit abweichender Chromosomenzahl gezeigt werden, dass für die Geschlechtsausprägung entscheidend ist, ob ein Y-Chromosom vorhanden ist oder nicht. Auf diesem befindet sich das SRY-Gen, welches für die Entwicklung zum Mann erforderlich ist. Beim Turner Syndrom haben die Betroffenen nur ein X-Chromosom und kein Y-Chromosom. Sie entwickeln sich zur Frau. Bei Drosophila ist es dagegen so, dass sich Individuen mit einem X- und ohne Y-Chromosom zu Männchen entwickeln. Hier ist das Verhältnis von Autosomen zu X-Chromosomen entscheidend. Liegt es bei 1 entstehen Weibchen, bei 2 entstehen Männchen. Bei manchen Arten kommen mehrere verschiedene X-Chromosomen und/oder mehrere verschiedene Y-Chromosomen vor. Als Extrembeispiel kann das Schnabeltier gelten, bei dem die Weibchen zehn X-Chromosomen (X1-X5, je 2 mal) und die Männchen fünf verschieden X- und fünf verschiedene Y-Chromosomen haben[8]. Das XY/XX-System bei Säugern ist im Artikel Geschlechtsdetermination ausführlich beschrieben.

Beim ZW/ZZ-System sind die Weibchen hemizygot, sie haben ein W- und ein Z-Chromosom, während die Männchen zwei Z-Chromosomen haben. Es kommt bei Vögeln, den meisten Schlangen, und jeweils einigen Eidechsen, Fischen und Amphibien vor.

Der Wurm Caenorhabditis elegans, ein Nematode, hat ein XX/X0-System: Es gibt die beiden Geschlechter Hermaphrodit und Männchen. Während die Hermaphroditen zwei X-Chromosomen haben, haben die selten vorkommenden Männchen nur eins davon. Es gibt aber kein anderes Geschlechtschromosom, die Männchen haben also ein Chromosom weniger, 9 statt 10. Wie bei Drosophila ist das Verhältnis von Autosomen zu X-Chromosomen entscheidend.

Bei über 2000 Arten von Hautflüglern (Ameisen, Bienen, Wespen) schlüpfen aus unbefruchteten Eiern Männchen, welche daher haploid sind[7]. Sie haben demnach nur halb so viele Chromosomen wie die diploiden Weibchen (Haplo-Diploidie, siehe Parthenogenese). Bei den gut untersuchten Bienen hat sich herausgestellt, dass ähnlich wie beim Menschen für die Geschlechtsbestimmung letztlich ein bestimmtes Gen entscheidend ist. Ist es in zwei verschiedenen Versionen vorhanden (bei den befruchteten Eiern) entstehen Weibchen. Ist es nur in einer Version vorhanden (bei unbefruchteten Eiern) entstehen Männchen. Durch Inzucht kann es dazu kommen, dass dieses Gen in befruchteten Eiern in zwei identischen Versionen vorhanden ist. Dann entstehen diploide Männchen[7]. Diese werden jedoch nach dem Schlüpfen aus dem Ei von den Arbeiterinnen aufgefressen.

Folge der Hemizygotie

Während die Weibchen der Säugetiere zwei X-Chromosomen haben, haben die Männchen wie soeben beschrieben nur je ein X- und ein Y-Chromosom, sie sind hemizygot. Dies führt dazu, dass bei einem Gendefekt auf dem einzigen vorhandenen X-Chromosom dieser nicht wie bei den Weibchen durch eine funktionierende Kopie auf dem anderen Chromosom aufgefangen werden kann. Daher gibt es beim Menschen eine Reihe von Erbkrankheiten, die praktisch nur bei Männern auftreten. Die bekanntesten Beispiele sind eine Form der Bluterkrankheit, die Duchenne’sche Muskeldystrophie und die Rot-Grün-Blindheit.

Dosiskompensation

  Als eine weitere Folge der chromosomalen Geschlechtsbestimmung liegt in einem der Geschlechter ein Chromosom zweimal vor, das beim anderen nur einmal da ist. Um zu verhindern, dass hier auch doppelt soviel Genprodukt wie im anderen Geschlecht erzeugt wird, haben verschiedene Tiergruppen verschiedene Strategien zur „Dosiskompensation“ entwickelt.

Beim Menschen, der Maus und möglicherweise den Säugetieren generell wird eines der beiden weiblichen X-Chromosomen inaktiviert. Das inaktive X-Chromosom erfährt dabei eine Reihe von Veränderungen, die es zum lichtmikroskopisch nachweisbaren Barr-Körperchen machen (siehe Abbildung). Dieser epigenetische Vorgang ist ausführlich in den Artikeln X-Inaktivierung und Geschlechts-Chromatin beschrieben.

Im Wurm Caenorhabditis elegans werden dagegen im Hermaphroditen beide X-Chromosomen gleichmäßig herunterreguliert. In der Fruchtfliege Drosophila melanogaster kommt es nicht zu einer X-Inaktivierung. Hier wird stattdessen das einzelne X-Chromosom im Männchen doppelt so stark abgelesen wie im Weibchen.

Bei Vögeln ist die Art der Dosiskompensation noch unverstanden. Möglicherweise wird das einzelne Z-Chromosom in Weibchen verstärkt abgelesen[9].

Chromosomenzahl

 

Karyotyp: Die Chromosomen eines Individuums

Alle verschiedenen Chromosomen, die in einem Individuum vorkommen, werden zusammen als Karyotyp bezeichnet. Die Individuen einer Art und vom gleichen Geschlecht haben normalerweise dieselbe Ausstattung an Chromosomen und somit den gleichen Karyotyp. Eine Ausnahme bilden die B-Chromosomen, die in manchen Arten vorkommen und die bei verschiedenen Individuen und auch in verschiedenen Körperzellen in unterschiedlichere Anzahl vorhanden sein können (siehe unten). Zur besseren Unterscheidung von den B-Chromosomen können die normalen Chromosomen als A-Chromosomen bezeichnet werden.

Auch bei diesen kann zwischen den Geschlechtern die Art und – seltener – auch die Zahl der Chromosomen abweichen; sie haben dann einen anderen Karyotyp (siehe auch oben, Geschlechtsbestimmung). Menschen haben zum Beispiel in beiden Geschlechtern 46 Chromosomen. Der Karyotyp wird entsprechend als 46, XX für Frauen und 46, XY für Männer angegeben. Karyotypen werden mit Hilfe von Karyogrammen bestimmt (siehe unten).

In vielen Fällen, so auch beim Menschen, finden sich im Karyotyp, abgesehen von den Geschlechtschromosomen im hemizygoten Geschlecht, immer zwei homologe Chromosomen, nämlich solche, die die gleichen Gene tragen. Man spricht in diesen Fällen von einem doppelten oder diploiden Chromosomensatz, der auch mit 2n abgekürzt wird. Bei sich geschlechtlich vermehrenden Organismen wurde von beiden Elternteilen je einer vererbt.

Weitergabe der Chromosomen zur nächsten Generation

Um eine stetige Zunahme der Chromosomenanzahl von Generation zu Generation zu verhindern, muss vor der Ausbildung der Keimzellen eine Reduktionsteilung stattfinden. Diese ist Bestandteil der Meiose, die in einem eigenen Artikel beschrieben ist. Während der Meiose kommt es durch Crossing over auch zu einer Rekombination der homologen Chromosomen. Dadurch entstehen genetisch neu zusammengesetzte Chromosomen, die sich von denen der Elternorganismen unterscheiden. Welche der rekombinierten Chromosomen zusammen in den resultierenden Zellen mit einem Chromosomensatz (haploide Zellen) enden, also welche väterlichen und mütterlichen Abschnitte zusammen kommen, ist zufällig. Bei diploiden Tieren werden haploide Keimzellen (Eizellen und Spermien) erzeugt. Eine in wenigen Tierarten gefundene Abweichung von einer zufälligen Verteilung der Chromosomen tritt bei der Hybridogenese auf (siehe dort). Die Keimzellen können wieder zur ersten Zelle eines neuen Lebewesens verschmelzen, der Zygote. Bei Pflanzen und Einzellern können sich haploide und diploide Generationen abwechseln (siehe Generationswechsel). Manchmal ist dabei die haploide Generation die dominante und der diploide Status ist nur sehr kurz.

Nicht-diploide Zahl von Chromosomensätzen

Gelegentlich findet sich die Auffassung, dass alle höheren Tiere und Pflanzen zwei Chromsomensätze hätten, also diploid seien. Dies ist jedoch nicht der Fall. Zwar sind die Mehrzahl der Tiere und viele Pflanzen diploid, es gibt jedoch auch etliche mit anderen Ploidiegraden.

Haploide Individuen kommen beispielsweise wie gerade beschrieben beim Generationswechsel der Pflanzen vor. Außerdem kommen haploide Männchen bei etlichen Insektenarten (siehe oben, Geschlechtsbestimmung) und wohl auch bei einigen Milben vor. Es ist ein Fall von haploiden weiblichen Tieren bekannt: Die Milbenart Brevipalpus phoenicis, ein Schädling tropischer Nutzpflanzen, besteht nur aus haploiden Weibchen, die sich parthenogenetisch vermehren. Einer Untersuchung zu Folge handelt es sich eigentlich um genetische Männchen, die durch eine Infektion mit Bakterien zu Weibchen verändert werden[10]. Verweiblichung durch Bakterieninfektion ist auch bei anderen Gliederfüßern bekannt, meist durch Wolbachia.

Bei manchen Arten kommen mehr als zwei Chromosomensätze und somit höhere Ploidiegrade vor. Diese werden als triploid = 3n, tetraploid = 4n, hexaploid = 6n oder allgemein als polyploid bezeichnet. Bei Pflanzen wird in der Regel die haploide Chromosomenzahl eines Organismus mit x (Grundzahl) bezeichnet. Diploide Pflanzen haben dann 2x Chromosomen, tetraploide 4x usw. Das Genom einer tetraploiden Pflanze mit der Grundzahl x = 7 wird dann als 2n = 4x = 28 beschrieben.[11]

Tetraploidie ist nach Diploidie wohl der zweithäufigste Ploidiegrad. Er wurde bei vielen Blütenpflanzen, Insekten und auch bei Amphibien beobachtet. Tetraploidie kann zustande kommen, indem eine Zellteilung nach Chromosomenverdopplung verhindert wird. Viele Nutzpflanzen, z. B. bei den Getreidesorten, entstanden durch Polyploidisierung aus diploiden Wildformen.

Bei Pflanzen kommen auch noch höhere Ploidiegrade vor. Sie können beispielsweise entstehen, wenn zwei Arten gekreuzt werden und die Kinder alle Chromosomen der Eltern behalten. Man spricht dann von Additionsbastarden. Hexaploid ist beispielsweise der moderne Saatweizen (zur Entstehung siehe hier).

Triploide Individuen können entstehen, wenn sich diploide und tetraploide Individuen paaren. Dies ist möglich, wenn beide zu nahe verwandten Arten gehören. In der Regel werden triploide Individuen jedoch steril sein, da eine ungerade Anzahl von Chromosomensätzen zu Schwierigkeiten bei der Paarung der Chromosomen während der Meiose führt. Ausnahmen, also fortpflanzungsfähige triploide Individuen, wurden bei den Amphibien entdeckt. Hier kommen manchmal Diploidie, Tetraploidie und auch Triploidie in nahe verwandten Arten oder in der gleichen Art nebeneinander vor. Beim Wasserfrosch wird einer der Chromosomensätze vor der Meiose gezielt eliminiert (Hybridogenese, siehe dort). In Pakistan wurde eine lokal begrenzte, triploide Population der Wechselkröte gefunden, bei der ebenfalls ein Chromosomensatz vor der Meiose gezielt eliminiert wird[12].

Zumindest theoretisch kann ein fließender Übergang beispielsweise von tetraploid zu diploid bestehen. In einem tetraploiden Lebewesen sind wie oben beschrieben alle Chromosomenpaare doppelt vorhanden. Veränderungen an einem der beiden Paare, zum Beispiel der Verlust einzelner Gene, können daher toleriert werden. Auch können sich die Genkopien auf den beiden Paaren während der weiteren Evolution auseinander entwickeln und verschiedene Funktionen übernehmen. Chromosomenmutationen (siehe unten) an nur einem der beiden Paare sind ebenfalls möglich. Kommen viele solche Veränderungen im Lauf der Zeit zusammen, so haben sich schließlich die ursprünglich identischen Chromosomenpaare so weit auseinander entwickelt, dass nicht mehr von vierfachen Chromosomensätzen gesprochen werden kann: Es liegt wieder Diploidie vor. Zwei Runden (daher „2R Hypothese“) solcher Genomduplikationen sind für die frühe Entstehungsgeschichte der Wirbeltiere vorgeschlagen worden, so dass sich die heutigen diploiden Wirbeltiere aus ursprünglich octaploiden (=8n) Lebewesen entwickelt hätten[13]. Dies würde erklären, warum beispielsweise die Hox-Gen-Cluster pro haploidem Genom der Wirbeltiere vier mal vorkommen, bei anderen Tieren aber nur einmal.

Der Ploidiegrad einzelner Körperzellen eines Mehrzellers kann durchaus vom Ploidiegrad des Organismus abweichen. Das bekannteste Beispiel hierfür sind sicher die Polytänchromosomen mancher Insekten (siehe auch oben). Aber auch für die Rattenleber wurden beispielsweise neben den vorherrschenden diploiden Zellen in seltenen Fällen auch haploide, triploide und tetraploide Zellen beschrieben[14]. Tetraploidie entsteht durch Verdopplung der Chromosomen ohne Kernteilung, also durch Endoreduplikation oder Endomitose. Haploide und triploide Körperzellen wurden in diploiden Organismen so selten gefunden, dass experimentelle Fehler oder Artefakte hier nicht ausgeschlossen werden können. Ihr potentieller Entstehungsmechanismus ist ungeklärt. Hohe Ploidiegrade gehen mit entsprechend größeren Zellkernen einher. Aufgrund der größeren Menge an genetischem Material können so auch sehr große Körperzellen versorgt werden.

Tabelle: Zahl der Chromosomen in normalen Körperzellen

Wenn nicht anders angegeben, beruhen die Zahlenangaben auf [15].

Säugetiere
Mensch46
Schimpanse48[16]
Gorilla 48[17]
Orang-Utan 48[17]
Rhesusaffe42[16]
Koboldmaki80
Fledermaus (Myotis)44
Hausmaus40[16]
Goldhamster44
Ratte (Rattus norvegicus)42[16]
Hund78[15][16]
Schwein (Sus scrofa)38[16]
Opossum (Monodelphis domestica)18[16]
Schnabeltier52[18]
Ameisenigel (beide Arten) weibl. /männl. 64/63[18]
andere Wirbeltiere
Fische 
Katzenhai24
Goldfisch94
Neunauge174
Amphibien 
Axolotl28
Geburtshelferkröte36
Reptilien 
Alligator32
Blindschleiche44
Sumpfschildkröte50
Zauneidechse38
Vögel 
Haushuhn78
Amsel80
Wirbellose Tiere
Pferdespulwurm (Ascaris megalocephala univalens)2[19]
Pferdespulwurm (Ascaris megalocephala bivalens)4[19]
Stechmücke (Culex)6
Taufliege (Drosophila melanogaster)8
Honigbiene (Apis, weibl./männl.)32/16[20]
Sonnentierchen44
Weinbergschnecke54
Tintenfisch (Sepia)12
Egel (Glossosiphonia)26


Pflanzen / Pilze
Champignon 8
Sauerampfer weibl. / männl.14 / 15
Einkorn / Emmer / Dinkel14 / 28 / 42
Süßkirsche (je nach Sorte)16, 24, 32, 54, 144
Cladophora (eine Alge)32
Huflattich60
Alpenveilchen48
Adlerfarn104
Wurmfarn164
Euglenaca. 200
Schachtelhalm216
Natternzunge480

Karyogramm

  Als Karyogramm bezeichnet man eine sortierte Darstellung der Chromosomen eines Metaphasepräparats. Diese Präparate werden erstellt, in dem Zell-Kulturen mit einem Mittel versetzt werden, dass die Bildung von Mikrotubuli verhindert, z. B. Colchizin oder Nocodazol. Dadurch kann sich kein Spindelapparat ausbilden und die Zelle kann nicht in Anaphase gehen. Als Folge sammeln sich etliche Zellen in der Metaphase (siehe oben) an und die Ausbeute wird entsprechend erhöht. Die Zellen werden hypoton behandelt, wodurch sie anschwellen, fixiert und auf einen Objektträger aufgetropft, wodurch die Metaphasechromosomen nebeneinander zu liegen kommen (siehe erste Abbildung oben). Die Chromosomen werden angefärbt, fotografiert und im Karyogramm der Größe nach angeordnet, so dass der Karyotyp bestimmt werden kann (siehe Abbildung rechts).

Karyogramme werden sowohl bei der Untersuchung der Karyotypen von Organismen als auch in der klinischen Anwendung bei Verdacht auf Chromosomenveränderungen eingesetzt.

Chromosomenmutationen

  Dauerhafte Veränderungen an den Chromosomen können auftreten, wenn an mindestens zwei Stellen Brüche in der DNA-Doppelhelix auftreten. In den meisten Fällen werden DNA-Doppelstrangbrüche wieder korrekt repariert, so dass es nicht zu bleibenden Veränderungen kommt. Werden jedoch bei einer DNA-Reparatur von zwei verschiedenen Brüchen die falschen Enden zusammengefügt, so kommt es zu Chromosomenmutationen. Liegen die Bruchpunkte auf dem gleichen Chromosom können Deletionen (Verlust eines Abschnitts) oder Inversionen (umdrehen) auftreten. Ein weiterer Mutationstyp innerhalb eines Chromosoms ist die Duplikation (Verdopplung eines Abschnitts). Sind die Doppelstrangbrüche auf verschiedenen Chromosomen, so kann es zu Translokationen kommen. Diese Phänomene sind in ihren eigenen Artikeln ausführlicher beschrieben, Übersichten geben die Artikel Chromosomenmutation und Chromosomenaberration.

Chromosomenmutationen spielen sowohl bei der Chromosomenevolution als auch im klinischen Bereich eine Rolle. Bezüglich der klinischen Bedeutung sind Erbkrankheiten (siehe auch unten), Tumorentstehung (z. B. das Philadelphia-Chromosom) und Strahlenbiologie zu nennen.

Von den genannten strukturellen Veränderungen sind zahlenmäßige Veränderungen zu unterscheiden, also ein zusätzliches oder ein fehlendes Chromosom. Diese werden nicht als Chromosomenmutation bezeichnet. Da nur ein einzelnes Chromsom betroffen ist, spricht man von Trisomie (nicht Triploidie) oder Monosomie (siehe Chromosomenaberration).

Chromosomenevolution

Als Chromosomenevolution wird die Veränderung von Chromosomen im Lauf der Evolution bezeichnet. Ähnlich wie an äußeren körperlichen Merkmalen oder an der Sequenz einzelner Gene lässt sich auch an den Chromosomen die Stammesgeschichte nachvollziehen. Beispielsweise sind die Chromosomen des Menschen (46 Stück) denen der großen Menschenaffen (Schimpansen, Gorillas und Orang-Utans, je 48 Chromosomen) sehr ähnlich. Es gibt innerhalb dieser Artengruppe nur zwei zwischen-chromosomale Umbauten. Spezifisch menschlich ist das Chromosom 2. Bei den anderen genannten Arten finden sich statt diesem zwei kleinere Chromosomen, die die entsprechenden Gensequenzen enthalten (siehe Abbildung). Gorilla-spezifisch ist dagegen eine Translokation zwischen jenen Chromosomen, die den menschlichen Chromosomen 5 und 17 entsprechen[17]. Daraus ergibt sich der ursprüngliche Karyotyp der Gruppe mit 48 Chromosomen, so wie er heute noch bei Schimpansen und Orang-Utans vorhanden ist.

  Eine evolutionär stabile Veränderung der Chromosomen ist nur möglich, wenn eine Chromosomenmutation in der Keimbahn auftritt. Eine „balancierte“ Veränderung, bei der alle Chromosomenabschnitte in der richtigen Anzahl vorhanden sind, hat dabei für den Träger zunächst keinen Krankheitswert. Es kommt jedoch zu Schwierigkeiten bei der Meiose. Die Veränderung tritt ja zunächst nur an jeweils einem Chromosom auf (bzw. an zweien bei Fusionen oder Translokationen), nicht aber an den jeweiligen homologen Chromosomen. Da also anders als sonst identisch aufgebaute Partner fehlen, kommt es nicht zu einer normalen meiotischen Paarung. Das Risiko für Segregationsfehler und daraus resultierende Keimzellen mit überzähligen oder fehlenden chromosomalen Abschnitten (und folglich kranken Kindern) steigt stark an. In den allermeisten Fällen werden solche Veränderungen daher in den Folgegenerationen wieder verloren gehen. Eine stabile Situation wird nur dann erreicht, wenn beide Kopien der beteiligten Chromosomen die entsprechende Veränderung tragen. Dies könnte beispielsweise geschehen, wenn ein dominantes Männchen mit einer Veränderung zahlreiche Kinder hat, die sich wiederum untereinander paaren, so dass Enkel mit der Veränderung auf beiden Kopien der beteiligten Chromosomen entstehen. Diese Nachkommen haben nun keinen Selektionsnachteil, wenn sie sich untereinander paaren. Bei der Paarung mit Individuen mit den ursprünglichen Chromosomen tritt jedoch bei entstehenden Kindern bedingt durch Segregationsfehler wiederum eine verminderte Fruchtbarkeit auf. Es wird daher vermutet, dass „fixierte“ Chromosomenveränderungen ein Mechanismus zur Artbildung sind.

Näher verwandte Arten oder Artgruppen müssen nicht immer ähnlichere Chromosomen haben als weiter entfernte Arten. Beispielsweise ähneln Chromosomen der großen Menschenaffen einschließlich des Menschen sehr stark denen von Makaken (Macaca fuscata). Die Chromosomen der näher verwandten kleinen Menschenaffen (Gibbons) unterscheiden sich jedoch sowohl von denen der großen Menschenaffen als auch denen der Makaken sehr stark. Durch zahlreiche Umbauten sind nur fünf der Gibbon-Chromosomen auf ihrer ganzen Länge (nur) einem menschlichen Chromosom homolog[17]. Offensichtlich gehen also evolutionäre Veränderungen im Karyotyp in manchen Gruppen (z. B. den Gibbons) sehr viel schneller voran als in anderen (Makaken, große Menschenaffen). Es wird vermutet, dass dies nicht an einer höheren Mutationsrate liegt, sondern an einer häufigeren Fixierung von aufgetretenen Veränderungen. Eine Ursache hierfür könnten unterschiedliche Lebensstile bzw. Sozialverhalten sein. Gibbons leben in kleinen Gruppen, in denen sich Chromosomenveränderungen schneller durchsetzen könnten als in großen Herden. Bei Gibbons finden sich chromosomale Polymorphismen (Unterschiede) im Karyotyp von untersuchten Tieren der gleichen Art, welche darauf hindeuten, dass die schnelle Chromosomenevolution in dieser Tiergruppe nach wie vor anhält. Die verhältnismäßig große Anzahl der Polymorphismen deutet allerdings auch darauf hin, dass der selektive Nachteil von Mischformen möglicherweise geringer ist als ursprünglich gedacht[17].


B-Chromosomen

B-Chromosomen[21],[22] sind Chromosomen, die in manchen Arten zusätzlich zum normalen Karyotyp auftreten. Sie kommen in diesen Arten per Definition nur bei einigen Individuen vor, oft begrenzt auf bestimmte Populationen und in unterschiedlicher Anzahl. In manchen Fällen kommen sie nicht in allen Geweben vor. Durch irreguläres Verhalten während der Mitose und der Meiose gelingt es Ihnen, sich eigennützig in der Keimbahn anzureichern, so dass eine nicht-mendelnde Vererbung stattfindet, bei der die für Chromosomen sonst übliche Weitergaberate von 50 % überschritten wird. Welche Mechanismen hierfür verantwortlich sind ist erst in wenigen Fällen geklärt (siehe [23] für eine Übersicht).

Sie werden den parasitären oder auch egoistischen genetischen Elementen zugeordnet, zu denen auch Transposons gehören. Zur einfachen Unterscheidung werden die normalen Chromosomen im direkten Vergleich als A-Chromosomen bezeichnet. B-Chromosomen entstanden in vielen Fällen vermutlich aus A-Chromosomen bzw. Teilen davon. Sie wurden erstmals 1907 von E.B. Wilson in Hemipteren beschrieben, ohne das zunächst ihre parasitären Eigenschaften deutlich wurden.

Die Evolution der B-Chromosomen hängt vermutlich weitgehend ab vom Wechselspiel des Selektionsdrucks auf das Wirtsgenom zugunsten ihrer Eliminierung oder Stilllegung einerseits und ihrer Fähigkeit diesem Druck auszuweichen andererseits. Da B-Chromosomen mit den A-Chromosomen wechselwirken, spielen sie dort wo sie vorkommen vermutlich eine wichtige Rolle in der Genomevolution insgesamt. Nicht alle B-Chromosomen sind schädlich für den Wirt. Manche sind in Ihrer Wirkung neutral, für einige werden sogar positive Wirkungen diskutiert, z. B. beim Schnittlauch.

Verbreitung

B-Chromosomen sind bisher in über 1300 Pflanzenarten, 500 Tierarten und einigen Pilzen beschrieben worden. Alle größeren Tier- und Pflanzengruppen sind dabei vertreten. Wenig überraschend wurden sie besonders häufig in gut untersuchten Gruppen gefunden. In Arten mit großen Genomen sind Bs häufiger als in solchen mit kleinen Genomen (z. B. einkeimblättrige versus zweikeimblättrige Blütenpflanzen, Grashüpfer (Orthoptera) versus Zweiflügler (Diptera) bei den Insekten). Bei Vögeln, die vergleichsweise kleine Genome haben, wurden B-Chromosomen nur bei einer einzigen Art entdeckt. Die folgende Liste gibt nur wenige Beispiele an.

Tiere: Bei den gut untersuchten Grashüpfern sind B-Chromosomen weit verbreitet (z. B. Eyprepocnemis plorans, selten mehr als drei). Andere Insekten mit Bs sind die Wespe Nasonia und die Fliege Drosophila subsilvestris. Weitere Beispiele: Der Plattwurm P. nigra (selten mehr als drei); der Neuseeländische Frosch Leiopelma hochstetteri mit bis zu 15 mitotisch stabilen Bs; der Fisch Poecilia formosa. In 55 (von 4629) Säugetieren sind bisher Bs gefunden worden[24] z. B. bei Waldmäusen[25]. Beim Menschen und Menschenaffen wurden sie nicht beobachtet.

Pflanzen: In Maispflanzen wurden bis zu 34 B-Chromosomen beschrieben, in Schnittlauch (Allium schoenoprasum) bis zu 20. In Wildpflanzen lag die gefundene Höchstzahl jedoch bei drei (Lolium perenne, B. dichromosomatica), vermutlich weil diese einem höheren Selektionsdruck unterliegen. In Lilien und verwandten Pflanzen (Lilianae) sowie Gräsern (Poaceae), zwei Gruppen die gut untersucht sind, sind B-Chromosomen weit verbreitet.

Chromosomen beim Menschen

Menschen haben 46 Chromosomen, davon 2 Geschlechtschromosomen oder Gonosomen (XX bei Frauen, XY bei Männern, siehe oben: Geschlechtsbestimmung). Die Chromosomen der übrigen 22 Chromosomenpaare werden als Autosomen bezeichnet. Die Autosomen wurden ihrer Größe im mikroskopischen Präparat entsprechend von 1 bis 22 durchnummeriert.

Eigenschaften der Geschlechtschromosomen

Obwohl sich das X- und das Y-Chromosom in ihrer Größe stark unterscheiden, haben sie auch Gemeinsamkeiten. An beiden Enden enthalten sie Regionen, in denen sich die DNA Sequenz zwischen X- und Y-Chromosom stark ähnelt, die pseudoautosomale Regionen (PAR). In den PARs befinden sich mehrere Gene, die also in beiden Geschlechtern doppelt vorhanden sind, und die auch nicht der X-Inaktivierung unterliegen (siehe oben: Dosiskompensation). In diesen Regionen ist während der Meiose eine Rekombination zwischen X- und Y-Chromosom möglich.

Auch in nicht rekombinierende Regionen des Y-Chromosoms haben etwa die Hälfte der Gene Entsprechungen auf dem X-Chromosom. Dies sind vor allem Gene des Grundstoffwechsels. Zwei der Gene, die auch auf dem X-Chromosom vorkommen, sind nur im Hoden aktiv. Die übrigen Gene ohne Entsprechung auf dem X-Chromosom sind ebenfalls nur im Hoden aktiv, bestimmen das männliche Geschlecht und steuern die Spermien-Produktion. Ein Verlust eines Stückes des langen Armes nahe dem Zentromer führt zu Kleinwuchs.

Genom- und Chromosomenmutationen mit klinischer Bedeutung

Durch Chromosomenaberrationen, also Chromosomenmutationen (siehe auch oben) oder eine falsche Anzahl von Chromosomen (numerische Chromosomenaberration oder Genommutation), kann es zu klinischen Syndromen mit zum Teil schwerwiegender Symptomatik kommen.

Eine Zuordnung der Krankheitsbilder zu entweder Chromosomenmutationen oder numerischen Chromosomenaberration ist nicht immer möglich. So wird z. B. das Down-Syndrom in den meisten Fällen durch ein zusätzliches, komplettes Chromosom 21 verursacht (freie Trisomie). Etwa 3 % der Fälle beruhen jedoch auf Translokationen, bei denen ein Teil des Chromosoms 21 an ein anderes Chromosom fusioniert ist. Nur dieser Teil ist dann dreifach vorhanden. Die folgenden Syndrome sind meist in ihren jeweils eigenen Artikeln ausführlich behandelt und hier nur übersichtsartig dargestellt.

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:  Bitte beachten Sie den Hinweis zu Gesundheitsthemen!

Autosomale Trisomien

Freie Trisomien bei Lebendgeborenen sind bei den Autosomen nur für die Chromosomen 21, 18 und 13 bekannt. Alle drei gehören zu den genarmen Chromosomen (vergleiche zweite Abbildung im Abschnitt G-, R- und andere Chromosomenbanden oben). Daraus lässt sich schließen, dass freie Trisomien der anderen Autosomen mit dem Leben unvereinbar sind.

  • Down-Syndrom oder Trisomie 21 (dreifaches/trisomes Vorliegen von Erbmaterial des Chromosoms 21 in allen oder einigen Körperzellen). Vorkommen: 1 Fall auf 600–800 Neugeborene. Wichtige Symptome sind u. a. Herzfehler und Intelligenzminderung. Während früher die meisten Betroffenen im Kindesalter an Infektionskrankheiten starben, liegt die durchschnittliche Lebenserwartung heute bei über 60 Jahren.
  • Edwards-Syndrom oder Trisomie 18 (dreifaches/trisomes Vorliegen von Erbmaterial des Chromosoms 18 in allen oder einigen Körperzellen). Vorkommen: 1 Fall auf 2.500 Neugeborene. Organfehlbildungen sind vielfältig, u. a. Herzfehler und Nierenmissbildungen. Schwere Intelligenzdefekte (keine Sprache), das Erwachsenenalter wird nur ausnahmsweise erreicht.
  • Pätau-Syndrom oder Trisomie 13 (dreifaches/trisomes Vorliegen von Erbmaterial des Chromosoms 13 in allen oder einigen Körperzellen). Vorkommen: 1 Fall auf 6.000 Neugeborene. Häufige Symptome sind u. a. Herzfehler, Lippen-, Kiefer-, Gaumenspalten, Polydaktylie (Vielfingerigkeit) und schwere Intelligenzdefekte. Das Erwachsenenalter wird nur ausnahmsweise erreicht.
  • Trisomie 8 (dreifaches/trisomes Vorliegen von Erbmaterial des Chromosoms 8 in einigen Körperzellen). Häufige Symptome sind u. a. tiefe Hand- und Fußlinien, Wirbelmissbildungen, Neuralrohrfehlbildungen (häufig Spina bifida aperta) und Großwuchs.

Abweichungen bei der Zahl der Geschlechtschromosomen

  • Ullrich-Turner-Syndrom, (45,X). Fehlendes zweites Geschlechtschromosom. Vorkommen: 1 Fall auf 3.000 Neugeborene. Frauen mit diesem Syndrom haben unterentwickelte weibliche Geschlechtsmerkmale, eine kleine Statur, einen tiefen Haaransatz, eine ungewöhnliche Augen- und Knochenentwicklung, eine Trichterbrust und sind meist unfruchtbar. Die Intelligenz ist normal ausgeprägt, manchmal sind räumliches Vorstellungsvermögen oder mathematische Fähigkeiten unterdurchschnittlich.
  • Trisomie X, (47,XXX). Die Trisomie X ist die klinisch unauffälligste Chromosomenaberration. Vermutlich werden viele Fälle nie festgestellt. Intelligenz ist meist niedriger als bei Geschwistern. Die Fruchtbarkeit kann leicht herabgesetzt sein. Die Nachkommen zeigen kaum erhöhte Rate von Chromosomenaberationen.
  • 48,XXXX und 49,XXXXX. Mit zunehmender Zahl der X-Chromosomen sinkt die Intelligenz und die Fruchtbarkeit.
  • Klinefelter-Syndrom, (fast immer 47,XXY; selten 48,XXXY oder 49,XXXXY). 1 Fall auf 1.000 männliche Neugeborene. Männer mit diesem Syndrom sind oft unfruchtbar, groß, haben ungewöhnlich lange Arme und Beine, eine Tendenz zur Ausbildung von Brüsten (Pseudo-Gynäkomastie) und eine reduzierte Körperbehaarung. Der Intelligenzquotient liegt durchschnittlich um 10 niedriger als bei Geschwistern.
  • XYY-Syndrom (47,XYY). Männer mit diesem Syndrom sind meist phänotypisch unauffällig und werden zufällig diagnostiziert. Die Lebenserwartung ist nicht eingeschränkt, die Fruchtbarkeit fast normal, sie sind durchschnittlich 10 cm größer als ihre Brüder und die Intelligenz im Vergleich zu Geschwistern leicht vermindert. Vereinzelt können mit der Chromosomenaberration assoziierte Störungen wie Hodenhochstand vorkommen.
  • höhergradige Y-Polysomien: 48,XXYY Männer sind ähnlich den XYY-Männern, jedoch unfruchtbar und mit Tendenz zu geringerer Intelligenz. Letztere verstärkt sich bei 48,XYYY und den sehr seltenen 49,XYYYY Männern. Auch treten Organfehlbildungen auf.

Markerchromosomen

Markerchromosomen sind alle nicht ohne weiteres definierbaren Chromosomen, die zusätzlich zu den normalen Chromosomen auftreten. Sie bestehen aus Material der normalen Chromosomen, sind aber meist klein, so dass eine Identifizierung durch G-Bänderung (siehe oben) nicht möglich ist. Diese kann mit hochauflösender Fluoreszenz in situ Hybridisierung erreicht werden. Eine klinisch wichtige Gruppe sind sogenannte „kleine überzählige Markerchromosomen“. Sie verursachen eine heterogene Gruppe von Syndromen, häufig verbunden mit geistiger Behinderung. Mit etwa 30 % sind Markerchromosomen aus Material des Chromosoms 15 am häufigsten. Mit 11 % folgen Isochromosomen des kurzen Arms von Chromosom 12, das Pallister-Killian-Syndrom. Das Cat-Eye-Syndrom ist ein weiteres Beispiel. Der Karyotyp wird mit 47,XY,+mar bzw. 47,XX,+mar angegeben.

Deletionen auf Autosomen

Monosomien von Autosomen kommen nicht vor. Die damit einhergehenden Schäden sind offenbar mit dem Leben unvereinbar. Es gibt jedoch eine Vielzahl unterschiedlicher Deletionen von Teilstücken eines Autosoms, die teilweise nur aus wenigen klinischen Fällen bekannt sind. Die folgende Liste ist daher nicht vollständig und umfasst nur die bekanntesten Beispiele.

  • Obwohl noch nicht lange bekannt ist eine Deletion des Endes des kurzen Arms von Chromosom 1 vermutlich die häufigste Deletion (1 Fall auf 5.000–10.000 Neugeborene). Die Symptome sind wenig einheitlich, meistens liegt schwere geistige Behinderung vor.
  • Das Cri-du-chat-Syndrom (Katzenschrei-Syndrom) wird durch Deletion des Endes des kurzen Arms von Chromosom 5 verursacht. Sie wurde als erste autosomale Deletion 1963 beschrieben. Die Häufigkeit liegt etwa bei einem Fall auf 50.000 Neugeborene. Im frühen Kindesalter fallen die Kinder durch ein hohes Schreien auf, das an das Schreien von Katzen erinnert und das durch Fehlbidlungen des Kehlkopfs bedingt wird. Sie haben weit auseinander liegende Augen (Hypertelorismus), einen kleinen Kopf (Mikrozephalie) und Kiefer und sind in ihrer Intelligenz gemindert. Da innere Organe meist nicht betroffen sind, sind die Überlebenschancen vergleichsweise gut.
  • Das Wolf-Hirschhorn-Syndrom wird durch Deletion des Endes des kurzen Arms von Chromosom 4 hervorgerufen. Die Häufigkeit liegt ebenfalls bei etwa einem Fall auf 50.000 Neugeborene. Betroffene sind kognitiv meist schwer beeinträchtigt und haben Wachstumsstörungen. Weniger als die Hälfte der Kinder überleben die ersten 18 Monate.
  • Das De-Grouchy-Syndrom kommt in zwei Varianten vor, die durch Deletionen der verschiedenen Arme des Chromosoms 18 verursacht werden.

Weitere Beispiele sind das Williams-Beuren-Syndrom (7q11.23) und das Smith-Magenis-Syndrom (17p11.2 – Häufigkeit zwischen 1:15.000 bis 1:25.000 Geburten angegeben).

Eine Besonderheit stellen Deletionen der Region 15q11.2-q12 dar. Dies Region unterliegt einer epigenetischen Regulation, dem „Imprinting“: Je nachdem, ob diese Region vom Vater oder von der Mutter vererbt wurde, sind bestimmte Gene aktiv oder inaktiv. Normalerweise sind beide Fälle jeweils einmal vorhanden. Fehlt jedoch einer der beiden, z. B. durch Deletion, so unterscheiden sich die Krankheitsbilder, je nachdem ob eine von der Mutter vererbte (Angelman-Syndrom) oder eine vom Vater vererbte (Prader-Willi-Syndrom) Region fehlt.

Der ICD-10-Code O35.1 wird angegeben bei der Betreuung einer werdenden Mutter bei (Verdacht auf) Chromosomenbesonderheit beim ungeborenen Kind.

Literatur

  • Gholamali Tariverdian: Chromosomen, Gene, Mutationen – humangenetische Sprechstunde. Springer, Berlin 1995, ISBN 3540586679
  • Walther Traut: Chromosomen. Springer, Berlin 1991, ISBN 3540533192
  • Jan Murken, Tiemo Grimm, Elke Holinski-Feder. Taschenlehrbuch Humangenetik, 7. Auflage, Thieme, Stuttgart, 2006, ISBN 3-13-139297-5.
  • Zur Geschichte: T. Cremer: Von der Zellenlehre zur Chromosomentheorie, Springer Verlag Berlin Heidelberg New York Tokyo, 1985, ISBN 3-540-13987-7. Online Version hier.
  • Chromosomen; Chromosomentheorie (Teil II)
  • Chromosomenstrukturen und strukturelle Veränderungen der Chromosomen
  • Feinbau der Chromosomen
  • Miniaturbildübersicht Chromosomen

Quellenangaben

  1. Gregory et al.: The DNA sequence and biological annotation of human chromosome 1. 2006. Nature 441:315–321, 2006. doi:10.1038/nature04727
  2. a b c www.ensembl.org, Homo sapiens. Datenbankstand von September 2006. (Website auf Englisch)[1]
  3. www.ensembl.org, Mus musculus (Hausmaus). Datenbankstand von September 2006. (Website auf Englisch)[2]
  4. a b www.ensembl.org, Gallus gallus (Huhn). Datenbankstand von September 2006. (Website auf Englisch)[3]
  5. Theophilus S. Painter, 1921, Studies in reptilian spermatogenesis. I. The spermatogenesis of lizards. Jour Exper Zoology 34:281–327.
  6. A.S. Belmont and K. Bruce. Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. 1994, J. Cell Biol. 127:287–302[4]
  7. a b c Panagiota Manolakou, Giagkos Lavranos and Roxani Angelopoulou. Molecular patterns of sex determination in the animal kingdom: a comparative study of the biology of reproduction. 2006. Reproductive Biology and Endocrinology, 4:59. doi:10.1186/1477-7827-4-59
  8. Frank Grützner, Willem Rens, Enkhjargal Tsend-Ayush, Nisrine El-Mogharbel, Patricia C. M. O’Brien, Russell C. Jones, Malcolm A. Ferguson-Smith and Jennifer A. Marshall Graves. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. 2004. Nature 432(7019):913–7. doi:10.1038/nature03021
  9. Laura Bisoni, Laura Batlle-Morera, Adrian P. Bird, Miho Suzuki and Heather A. McQueen. Female-specific hyperacetylation of histone H4 in the chicken Z chromosome. 2005. Chromosome Res. 13(2):205–14. doi:10.1007/s10577-005-1505-4
  10. Andrew R. Weeks, Frantisek Marec, Johannes A. J. Breeuwer. A mite species that consists entirely of haploid females. 2001. Science, 292:2479–82. doi:10.1126/science.1060411
  11. P. Sitte, E. W. Weiler, J. W. Kadereit, A. Bresinsky, C. Körner: Strasburger – Lehrbuch der Botanik für Hochschulen. 35. Auflage, Spektrum Akademischer Verlag, Heidelberg 2002, S. 531, ISBN 3-8274-1010-X.
  12. Matthias Stöck, Dunja K. Lamatsch, Claus Steinlein, Jörg T. Epplen, Wolf-Rüdiger Grosse, Robert Hock, Thomas Klapperstück, Kathrin P. Lampert, Ulrich Scheer, Michael Schmid & Manfred Schartl. 2002. A bisexually reproducing all-triploid vertebrate. Nat. Genet. 30:325–328. doi:10.1038/ng839.
  13. Paramvir Dehal and Jeffrey L. Boore. Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate. 2005. PLoS Biol 3(10):e314. doi:10.1371/journal.pbio.0030314
  14. Eberhard Gläss. Die Identifizierung der Chromosomen im Karyotyp der Rattenleber. 1955. Chromosoma 7:655–669 doi:10.1007/BF00329746.
  15. a b Rainer Flindt, Biologie in Zahlen, Gustav Fischer Verlag, Stuttgart, 1985, S. S. 86 f. und S. 138 f. ISBN 3-437-30466-6
  16. a b c d e f g www.ensembl.org. Datenbankstand von September 2006. (Website auf Englisch)[5]
  17. a b c d e A Jauch, J Wienberg, R Stanyon, N Arnold, S Tofanelli, T Ishida, and T Cremer. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci U S A. 1992 89:8611–8615[6]
  18. a b Jaclyn M. Watson, Julianne Meynedagger, and Jennifer A. Marshall Graves. Ordered tandem arrangement of chromosomes in the sperm heads of monotreme mammals. 1996 Proc. Natl. Acad. Sci. USA, 93:10200. [7]
  19. a b Theodor Boveri, 1910, Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung, Verlag von Gustav Fischer, Jena.
  20. G. J. Hunt and R. E. Page-Jr. Linkage Map of the Honey Bee, Apis Mellifera, Based on Rapd Markers. 1995. Genetics 139(3): 1371–1382, Table 1. [8]
  21. Juan Pedro M. Camacho, Timothy F. Sharbel, Leo W. Beukeboom. B-chromosome evolution. 2000. Phil. Trans. R. Soc Lond. B 355:163–178. doi:10.1098/rstb.2000.0556
  22. B.G. Palestisa, R. Triversb, A. Burtc, R.N. Jones. The distribution of B chromosomes across species. 2004. Cytogenet. Genome Res. 106:151–158. doi:10.1159/000079281
  23. Klaus Frisch, Nicht-zufällige Segregation von Chromosomen – Eine Übersicht über die Literatur von 1908 bis 1995. 2001. Online erhältlich hier
  24. M. Vujoševicacute and J. Blagojevicacute. B chromosomes in populations of mammals. 2004. Cytogenetic and Genome Research 2004;106:247–256. doi:10.1159/000079295)
  25. J.M. Wójcik, A.M. Wójcik, M. Macholán, J. Piálek, J. Zima. The mammalian model for population studies of B chromosomes: the wood mouse (Apodemus). 2004. Cytogenetic and Genome Research 106:264–270. doi:10.1159/000079297
  Dieser Artikel basiert auf dem Artikel Chromosom aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.