Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Feshbach-ResonanzEine Feshbach-Resonanz ist ein Effekt aus der physikalischen Streutheorie, die nach dem amerikanischen Physiker Herman Feshbach benannt ist. Sie tritt auf, wenn ein gebundener Zustand (Molekülzustand) zwischen zwei Atomen in einem Streupotential, das sich energetisch nur wenig oberhalb der Energiesumme der einlaufenden Teilchen befindet. In diesem Falle können die beiden Atome diesen gebundenen Zustand einnehmen. Infoldedesen "spüren" sie das Potential für längere Zeit und die Änderung ihrer Wellenfunktion nimmt zu. Dadurch ändert sich die Streulänge des Systems. Weiteres empfehlenswertes Fachwissen
Feshbach-Resonanzen können künstlich herbeigeführt werden: Im Falle der magnetischen Feshbach-Resonanz bedient man sich des Zeeman-Effektes, um die Streupotentiale so zueinander zu verschieben, dass diese Resonanz auftritt. Bei der optischen Feshbach-Resonanz hingegen koppelt man die Atome mit dem Molekülzustand, indem man Laserlicht mit dem exakten Energieabstand einstrahlt. Mit beiden Methoden lässt sich so die Streulänge nahezu beliebig ändern. Die Molekülzustände werden normalerweise nicht tatsächlich besetzt: Dies ist unmöglich, da dabei ja Energie gewonnen oder verloren würde. Nur wenn die Energie des Molekülzustanddes genau mit der Energiesumme der einlaufenden Atome zusammenfällt, gilt Energieerhaltung und die Atome können Moleküle bilden. Bei einer magnetischen Feshbach-Resonanz kann man diesen Fall künstlich herbeiführen und so gezielt Moleküle erzeugen. Man braucht nur das Magnetfeld so einzustellen, dass sich Moleküle bilden. Dann kann man das Molekülpotential absenken, und die Moleküle bleiben bestehen. Ultrakalte Atome und MoleküleDie wichtigsten Anwendungen der Feshbach-Resonanz dürften im Bereich der ultrakalten Atome liegen (10-7 Kelvin und weniger). Sie sind hier als Forschungsobjekt beliebt, aber auch gefürchtet, führen sie doch insbesondere bei Bosonen zu starken Verlusten, da beim Durchstimmen der Magnetfelder sich die Streulänge plötzlich ändert, die Atome dadurch stoßen können und man durch Stoßprozesse die Atome aus der Falle verliert. Bei Fermionen wird genau dies begrüßt: Die Feshbach-Resonanz ermöglicht nicht nur eine Wechselwirkung, sondern sogar eine, die sich wie oben beschrieben nach Belieben verändern lässt. Mit Fermionen konnte man daher auch erstmalig wie oben erwähnt gezielt Moleküle erzeugen. Da diese wiederum als Fermionenpaare Bosonen darstellen, konnte man diese in Form eines Bose-Einstein-Kondensates (in der Fachliteratur: BEC) kondensieren. Aber nicht nur das: liegt der Molekülzustand energetisch niedriger als die Energiesumme der einlaufenden Atome (der Wechselwirkungsoperator im Hamiltonian muss negativ sein), ist die Wechselwirkung anziehend. Existiert zwischen Fermionen eine anziehende Wechselwirkung, so ist eine der Voraussetzungen der BCS-Theorie erfüllt. So konnte man einen BCS-Zustand aus ultrakalten Atomen erzeugen, der dem Elektronen-Grundzustand eines Supraleiters gleicht. Man erhält auf diese Weise durch die Feshbach-Resonanz einen sog. BEC-BCS-Übergang, ein gegenwärtig (2007) sehr aktuelles Forschungsgebiet. Literatur
|
Dieser Artikel basiert auf dem Artikel Feshbach-Resonanz aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |