Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
FestkörperlaserAls Festkörperlaser werden optisch angeregte Laser bezeichnet, deren verstärkendes (aktives) Medium aus einem kristallinen oder glasartigen (amorphen) Festkörper besteht. In diesem sog. Wirtsmaterial oder Wirtskristall sind in bestimmter Konzentration (Dotierung) die laseraktiven Ionen enthalten. Festkörperlaser werden mit Licht bzw. Infrarotstrahlung gepumpt. Weiteres empfehlenswertes Fachwissen
FunktionDer Wirtskristall oder ein Glas ist mit Ionen eines fremden Stoffes dotiert. Diese Fremdionen sind das eigentliche aktive Medium der Festkörperlaser. Die für das Lasern genutzten Elektronenniveaus dieser Ionen liegen innerhalb des d-Orbitals (Titan, Chrom, Cobalt) bzw. f-Orbitals (Neodym, Erbium, Ytterbium). Diese Orbitale sind nicht an chemischen Bindungen beteiligt. Das Trägermaterial (Wirtskristall, Glas) hat daher nur geringen Einfluss auf die Laser-Eigenschaften der Ionen. Um im aktiven Medium eine Energieaufnahme zu erreichen, müssen Elektronen ins obere Pumpniveau gehoben werden. Dieser Vorgang heißt Pumpen. Festkörperlaser werden immer optisch (d. h. durch Strahlung) gepumpt. Aus der für die Dotierungsionen charakteristischen Energiedifferenz zwischen unterem und oberem Pumpniveau ergibt sich die wirksame Pumplichtwellenlänge. Oberes und unteres Pumpniveau stimmen meist nicht mit oberem und unteren Laserniveau überein (man spricht von 3- oder 4-Niveau-Lasern): Leert sich z. B. das untere Laserniveau sehr schnell durch Gitter-Relaxationen in das untere Pumpniveau, lässt sich viel leichter eine zum Lasern erforderliche Besetzungsinversion erreichen, da ja das untere Niveau kaum gefüllt ist. Ebenso ist es hilfreich, wenn die Elektronen im oberen Laserniveau eine lange Verweildauer haben – deren Energie kann dann mit einer Güteschaltung schlagartig als Laserimpuls freigesetzt werden. Die Betriebsart kann kontinuierlich („continous wave“ , CW) oder gepulst sein, wobei Glaslaser (außer Faserlaser) nur gepulst betrieben werden. Die Pulsung kann durch das Pumpen (Blitzlampen) oder einen resonatorinternen (intra-cavity) optischen Schalter (Güteschalter) erfolgen. Kombiniert man beides (hohe Pump-Spitzenleistung durch Blitzlampe, danach Freisetzung der im oberen Laserniveau gespeicherten Energie durch Öffnen des Güteschalters), sind während einiger Nanosekunden Spitzenleistungen von einigen Megawatt erreichbar. Durch Nachverstärkung und Impulsweitung und -kontraktion sind während weniger Femtosekunden Leistungen im Petawattbereich erzielbar. Mit Festkörperlasern lassen sich die höchsten Spitzenleistungen und die kürzesten Impulsdauern aller Laserarten erzeugen. gängige Wirtsmaterialien / Wirtskristalle
häufig verwendete Dotierungsmaterialien
Formen des aktiven Mediums
PumpanordnungenDas Pumpen erfolgt z. B. durch das Beleuchten des Lasermediums (Laserstab) mit intensiven Lichtquellen wie zum Beispiel Gasentladungslampen (Bogenlampen oder Blitzlampen). Die verwendeten Gasentladungslampen müssen einen möglichst hohen Spektralanteil bei der Pump- Wellenlänge (im Allgemeinen im nahen Infrarot NIR) besitzen. Es sind Krypton- oder Xenon-Bogenlampen mit Wolfram-Elektroden, die einzeln oder zu zweit parallel zum Stab angeordnet sind. Laserstab und Lampen sind meist wassergekühlt (deionisiertes Wasser umspült Lampen und Stab). Der Laserstab muss möglichst gleichmäßig ausgeleuchtet sein. Das erreicht man mit Innenreflektoren aus einer Goldschicht oder Halbschalen aus einer diffus reflektierenden weißen Keramik. Der Laserstab muss vor harter Ultraviolettstrahlung der Lampen geschützt werden – dazu dient ein Schutzglasrohr. Pumpen mit Diodenlasern Vorteile
Nachteile
Pumpen von Faser- und Scheibenlasern Bei Scheibenlasern durchläuft die Pumpstrahlung die Scheibe mehrfach, indem sie mit einem Prismenreflektor mehrfach zurück auf die Scheibe gelenkt wird, um möglichst vollständig absorbiert zu werden. Beim Faserlaser gelangt die fokussierte Pumpstrahlung durch die Endfläche der Faser in diese hinein (endgepumpt) oder eine Umhüllung (cladding) der Faser führt die Pumpstrahlung entlang dem aktiven (dotierten) Faserkern. Auch die umgekehrte Anordnung (Pumpstrahlung im Kern) ist möglich. ResonatorEin Resonator ist (außer beim Faserlaser) erforderlich und besteht wie bei anderen Lasern aus einem 100 %-Spiegel (Endspiegel) und einem teildurchlässigen Spiegel (Auskoppelspiegel). Es sind für die Laserwellenlänge geeignete dielektrische Interferenz-Spiegel, da Metallspiegel die Strahlintensität nicht überstehen bzw. zu große Verluste aufweisen. Innerhalb der Spiegel befindet sich der an seinen Endflächen entspiegelte Kristallstab sowie ggf. weitere optische Bauteile, z. B. Kristalle zur Frequenzverdopplung/-vervielfachung oder zur Güteschaltung. AnwendungenFestkörperlaser sind die neben dem Kohlendioxidlaser am häufigsten in der Industrie zur Materialbearbeitung eingesetzten Laser.
Weitere vielfältige Anwendungen gibt es im wissenschaftlichen Bereich. Die Laser mit den kürzesten Pulslängen und den höchsten Spitzenleistungen sind Festkörperlaser. GeschichteDer erste je gebaute Laser, entwickelt von Maiman im Jahre 1960, war ein Festkörperlaser – ein lampengepumpter Rubinlaser. Lampengepumpte Nd:YAG-Laser für kontinuierlichen und gepulsten Betrieb sowie Nd:Glas-Laser für sehr hohe Pulsenergien bildeten lange Jahre die wesentlichsten Vertreter von Festkörperlasern in Industrie und Forschung. Seit etwa 1995 erobern sie durch die Möglichkeit des Pumpens mit Laserdioden eine Vielzahl neuartiger Festkörper-Laser und aktiver Materialien zahlreiche neue Anwendungen in Forschung und Industrie. Herausragende Ergebnisse sind Kurzpulslaser bis in den Sub-Pico-Sekunden-Bereich, miniaturisierte frequenzverdoppelte Festkörperlaser (z. B. grüne Laserpointer) und die extrem gute Fokussierbarkeit von Scheiben- und Faserlasern, die hohe Arbeitsabstände (z. B. in 1 Meter Abstand Metall schweißen) bzw. gute Schnittleistungen ermöglichen. Festkörperlaser lösen durch ihre gestiegene Effizienz, Strahlqualität und Leistung vielfach die industriellen CO2-Laser mittlerer Leistung ab, da auf diese Weise z. B. die Strahlübertragung mit Lichtleitkabeln möglich ist und die Absorption auf Metallen besser ist. |
|
Dieser Artikel basiert auf dem Artikel Festkörperlaser aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |