Meine Merkliste
my.chemie.de  
Login  

Fettsäure



Fettsäuren ist eine Gruppenbezeichnung für Monocarbonsäuren, also Verbindungen, die aus einer Carboxylgruppe (–COOH) und aus einer unterschiedlich langen, aber fast ausschließlich unverzweigten Kohlenwasserstoffkette bestehen. Die Namensgebung Fettsäure ist einerseits bedingt durch die chemischen Eigenschaften dieser Stoffgruppe, die durch ihre Carboxylgruppe sauer reagiert. Andererseits geht der Name auf die Entdeckungsgeschichte dieser Alkancarbonsäuren als Bestandteil natürlicher Fette zurück. Aus dieser Sicht werden Fettsäuren zu den Lipiden gezählt.

Inhaltsverzeichnis

Allgemeines

Fettsäuren unterscheiden sich durch die Anzahl der C-Atome (Kettenlänge) sowie der möglichen Anwesenheit, Anzahl und Position von Doppelbindungen. Man kann Fettsäuren aufgrund ihrer Kettenlängen in niedere (bis sieben C-Atome), mittlere (acht bis zwölf C-Atome) und höhere (mehr als zwölf C-Atome) Fettsäuren einteilen. Die historische Namensgebung als Fettsäure suggeriert, dass eine individuelle Verbindung einmal eine Komponente eines Fettes gewesen sein muss, um eine Fettsäure zu sein. Dies ist aber nicht zwangsläufig der Fall. Unter diesem Begriff werden heute Verbindungen chemischer Ähnlichkeiten gesammelt.

Natürliche Fettsäuren bestehen in der Regel aus einer geraden Zahl von Kohlenstoffatomen und sind unverzweigt. Die Kohlenstoffkette muss mindestens vier C-Atome lang sein, somit ist die Buttersäure die einfachste natürliche Fettsäure. Bei Fettsäuren mit Doppelbindungen spricht man von sogenannten ungesättigten Fettsäuren. Die Doppelbindung ist in der Regel cis-konfiguriert. Liegen mehrere Doppelbindungen vor, sind diese in der Regel durch eine CH2-Gruppe voneinander getrennt.

Eine große Vielfalt von Fettsäuren (mehr als 400 verschiedene Strukturen, wovon aber nur etwa 10–12 häufig sind) kommt in den Samenölen des Pflanzenreichs vor.[1] Seltene Fettsäuren, die in größeren Prozentgehalten in Samen bestimmter Pflanzenfamilien auftreten, können entwicklungsgeschichtliche Zusammenhänge illustrieren (Verwandtschaftsbeziehungen, Chemotaxonomie, Evolution; vgl. z. B. auch Welwitschia).

Als Essentielle Fettsäuren bezeichnet man Fettsäuren, die der Organismus nicht aus anderen Nährstoffen synthetisieren kann. Für den Menschen sind all jene Fettsäuren essentiell, die mindestens eine Doppelbindung distal (von der Carboxylgruppe weg) vom neunten C-Atom haben.

Die Natrium- oder Kalium-Salze der höheren Fettsäuren sind als Seifen bekannt und werden als Tenside verwendet.

Sie werden in der Lebensmittelindustrie hauptsächlich als Rohstoff für verschiedene Emulgatoren verwendet, daneben jedoch auch als Trägerstoffe, Trennmittel (z. B. in Kaugummi) oder als Überzugsmittel (z. B. für Obst). Sie sind in der EU als Lebensmittelzusatzstoff der Sammelbezeichnung E 570 ohne Höchstmengenbeschränkung (quantum satis) für Lebensmittel allgemein zugelassen.

Gesättigte und ungesättigte Fettsäuren

  Eine gesättigte Fettsäure ist eine Fettsäure, die keine Doppelbindungen zwischen C-Atomen aufweist. Die gesättigten Fettsäuren bilden eine sogenannte homologe Reihe mit der Summenformel CnH2n+1COOH.     Ungesättigte Fettsäuren besitzen eine Doppelbindung und mehrfach ungesättigte Fettsäuren haben zwei oder mehrere Doppelbindungen zwischen den Kohlenstoffatomen der Kette. Da in natürlichen Fettsäuren die Doppelbindungen meist in der cis-Konfiguration vorliegen, entsteht ein Knick von etwa 30° in der Kohlenwasserstoffkette. Dadurch ist die Van-der-Waals-Wechselwirkung zu anderen Molekülen abgeschwächt und der Schmelzpunkt verringert. Einige ungesättigte Fettsäuren sind für den Menschen essentiell (lebensnotwendig), da sie vom menschlichen Körper nicht synthetisiert werden können. Dazu zählen Fettsäuren, die Doppelbindung(en) an bestimmten Positionen tragen, sogenannte Omega-n-Fettsäuren. Hierbei steht n für eine Zahl und beschreibt die Position einer der Doppelbindung. Bei der Omega-Zählweise (ω-) wird vom Ende der Kohlenstoffkette aus gezählt, wobei die Carboxylgruppe den Anfang des Moleküls bildet. Liegen mehrere Doppelbindungen vor, ist nur die Position der als erstes vorliegenden Doppelbindung entscheidend. In der Abbildung der Linolensäure ist die ω-Zählweise in rot dargestellt. (Siehe auch: Omega-3-, Omega-6- und Omega-9-Fettsäure).   Neben ungesättigten Fettsäuren in der cis-Konfiguration kommen in der Natur auch Fettsäuren mit trans-konfigurierten Doppelbindungen vor, sogenannte Transfettsäuren. Transfettsäuren fallen auch als Nebenprodukt bei der Margarineherstellung an und stehen unter Verdacht, gesundheitsschädliche Eigenschaften zu haben.   Liegen mehrere Doppelbindungen in einer Fettsäure vor, sind diese in der Regel – analog der oben rechts gezeigten Linolensäure – durch eine CH2-Gruppe voneinander getrennt. Es existieren jedoch auch sogenannte konjugierte Fettsäuren, bei denen die Doppelbindungen enger beieinander, nämlich konjugiert vorliegen. In der Abbildung der Octadeca-9c,11t-diensäure (rechts) liegen die Doppelbindung konjugiert vor. Da eine der Doppelbindung als trans-Doppelbindung vorliegt, ist diese Verbindung gleichzeitig eine Transfettsäure. Für die Bildung dieser Fettsäuren sind oft Bakterien im Verdauungstrakt der Wiederkäuer Ursache. Konjugierte Fettsäuren sind daher in allen Milchprodukten vertreten.

Verzweigte Monocarbonsäuren

   

Verzweigte Carbonsäuren werden in der Regel nicht zu den Fettsäuren gezählt, finden sich jedoch in einigen Etherischen Ölen. So enthalten die Extrakte aus Baldrian Ester der Isovaleriansäure.

Phytansäure (3,7,11,15-Tetramethylhexadecansäure) ist eine verzweigtkettige Carbonsäure, die als Abbauprodukt des Chlorophylls auftritt. In vielen Nahrungsmitteln (z. B. der Milch) sind Spuren dieser Verbindung zu finden. Die krankhafte Unfähigkeit zum Abbau dieser Carbonsäure führt zum Refsum-Syndrom.

Liste von Fettsäuren und kürzerer Monocarbonsäuren

gesättigte Fettsäuren und Monocarbonsäuren
Zahl der C-Atome: Doppel-
bindungen
Trivialname Bruttoformel Vorkommen Schmelz-
punkt
Chemische Bezeichnung
1:0 Ameisensäure HCOOH Weitverbreitet, in fast allen Organismen 8 °C Methansäure
2:0 Essigsäure CH3COOH Essig (durch Oxidation von Ethanol) 16,2 °C Ethansäure
3:0 Propionsäure C2H5COOH Zwischenprodukt bei der Methangärung −24 °C Propansäure
4:0 Buttersäure C3H7COOH Milchfett, Schweiß −8 °C Butansäure
5:0 Valeriansäure C4H9COOH Baldrianwurzel, Holzessig −35 °C Pentansäure
6:0 Capronsäure C5H11COOH Milchfett, entsteht bei Buttersäuregärung −4 °C Hexansäure
7:0 Önanthsäure C6H13COOH als Ester im Kalmusöl −7,5 °C Heptansäure
8:0 Caprylsäure C7H15COOH Milchfett, Kokosfett 17 °C Octansäure
9:0 Pelargonsäure C8H17COOH ätherisches Öl von Pelargonium roseum, Käse, Fuselöl, Wein 12,5 °C Nonansäure
10:0 Caprinsäure C9H19COOH Tier- und Pflanzenfette 31 °C Decansäure
12:0 Laurinsäure C11H23COOH Milchfett, Pflanzenfette 43,2 °C Dodecansäure
14:0 Myristinsäure C13H27COOH Milchfett, Fischöl, Tier- und Pflanzenfette 53,9 °C Tetradecansäure
16:0 Palmitinsäure C15H31COOH Tier- und Pflanzenfette 62,8 °C Hexadecansäure
17:0 Margarinsäure C16H33COOH Tier- und Pflanzenfette 61,3 °C Heptadecansäure
18:0 Stearinsäure C17H35COOH Tier- und Pflanzenfette 69,6 °C Octadecansäure
20:0 Arachinsäure C19H39COOH in geringen Mengen in Pflanzensamen und Tierfetten 75,4 °C Eicosan-/Icosansäure
22:0 Behensäure C21H43COOH in geringen Mengen in Pflanzensamen und Tierfetten, bei Morbus Gaucher   Docosansäure
24:0 Lignocerinsäure C23H47COOH einige Pflanzenfette, Bestandteil der Sphingomyeline   Tetracosansäure
26:0 Cerotinsäure C25H51COOH Bienenwachs, Carnaubawachs, Montanwachs, Wollschweiß   Hexacosansäure
einfach ungesättigte Fettsäuren
Zahl der C-Atome: Doppel-
bindungen
Trivialname Bruttoformel Stellung
der
Doppel-
bindungen
Vorkommen Schmelz-
punkt
Chemische Bezeichnung
11:1 Undecylensäure C10H19COOH 10   24,5 °C (10Z)- Undeca- 10- ensäure
16:1 Palmitoleinsäure C15H29COOH 9 Milchfett, Depotfett der Tiere, Fischtran, Pflanzenfett   (9Z)- Hexadeca- 9- ensäure
18:1 Ölsäure C17H33COOH 9 in allen Naturfetten 16 °C (9Z)- Octadeca- 9- ensäure
18:1 Elaidinsäure1 C17H33COOH 9 im Fett von Wiederkäuern 44–51 °C (9E)- Octadeca- 9- ensäure
18:1 Vaccensäure2 C17H33COOH 11     (11E)- Octadeca- 11- ensäure
20:1 Icosensäure C19H37COOH 11 in Rapsöl 16 °C (11Z)- Eicosa- 11- ensäure
22:1 Cetoleinsäure C21H41COOH 11 Pflanzenöle   (11Z)- Docosa- 11- ensäure
22:1 Erucasäure C21H41COOH 13 Rapsöl   (13Z)- Docosa- 13- ensäure
24:1 Nervonsäure C23H47COOH 15     (15Z)- Tetracosa- 15- ensäure


mehrfach ungesättigte Fettsäuren
Zahl der C-Atome: Doppel-
bindungen
Trivialname Bruttoformel Stellung
der
Doppel-
bindungen
Vorkommen Schmelz-
punkt
Chemische Bezeichnung
18:2 Linolsäure C17H31COOH 9, 12 Pflanzenöle, insbesondere Distelöl −5 °C (9Z,12Z)- Octadeca- 9,12- diensäure
18:3 Linolensäure3 C17H29COOH 9, 12, 15 einige Pflanzenöle, insbesondere Leinöl −11 °C (9Z,12Z,15Z)- Octadeca- 9,12,15- triensäure
20:4 Arachidonsäure C19H31COOH 5, 8, 11, 14 Tierfette, Fischtran −49,5 °C (5Z,8Z,11Z,14Z)- Eicosa- 5,8,11,14- tetraensäure
20:5 Timnodonsäure C19H29COOH 5, 8, 11, 14, 17 Fischöle −54 °C (5Z,8Z,11Z,14Z,17Z)- Eicosa- 5,8,11,14,17- pentaensäure
22:5 Clupanodonsäure C21H33COOH 7, 10, 13, 16, 19 Fischöle   (7Z,10Z,13Z,16Z,19Z)- Docosa- 7,10,13,16,19- pentaensäure
22:6 Cervonsäure C21H31COOH 4, 7, 10, 13, 16, 19 Fischöle   (4Z,7Z,10Z,13Z,16Z,19Z)- Docosa- 4,7,10,13,16,19- hexaensäure

Anmerkungen:

1 Die Elaidinsäure, das trans-Isomere der Ölsäure, entsteht bei der Fetthärtung zur Herstellung von Margarine durch partielle Hydrierung mehrfach ungesättigter Fettsäuren im Zuge einer Isomerisierung. In der Natur kommt sie im Fett von Wiederkäuern (Milch, Butter, Rindertalg) vor, da deren Pansenorganismen ebenfalls hydrierende Enzyme besitzen.
2 Vaccensäure ist eine trans-Fettsäure[2] und kommt in Milchprodukten von Wiederkäuern vor.
3 Beim Linolsäure-Isomeren mit den Doppelbindungen in den Positionen 9, 12 und 15 (alle in cis-Konfiguration) handelt es sich um die alpha-Linolensäure, das Isomere mit den Doppelbindungen in den Positionen 6, 9 und 12 (alle in cis-Konfiguration) wird als gamma-Linolensäure bezeichnet.

Stoffwechsel

Fettsäureabbau

Fettsäuren werden als Triglyceride im Fettgewebe gespeichert. Bei Bedarf, der durch die Botenstoffe Adrenalin, Noradrenalin, Glucagon oder ACTH angezeigt wird, findet dort eine Lipolyse statt.

Die freien Fettsäuren werden dann im Blutkreislauf zu den energiebenötigenden Zellen transportiert, wo sie zuerst unter ATP-Verbrauch an Coenzym A (CoA) gebunden (aktiviert) werden. Diese Reaktion wird durch die Hydrolyse des dabei entstehenden Pyrophosphats zu zwei Phosphaten (Pi) vorangetrieben.

\mathrm{R{-}COOH + CoA{-}SH + ATP \longrightarrow R{-}CO{-}S{-}CoA + 2 \ P_i + H^+ + AMP}

Danach werden sie durch das Enzym Carnitin-Acyltransferase I an Carnitin gebunden und in die Matrix der Mitochondrien transportiert, wo sie durch Carnitin-Acyltransferase II wieder an CoA gebunden werden.

In der Matrix des Mitochondriums findet die β-Oxidation der Fettsäuren zu Acetyl-CoA statt, welches im Citratzyklus weiterverwendet werden kann, um ATP zu gewinnen. Bei längeren Hungerperioden oder unausgewogener Ernährung mit sehr wenig Kohlehydraten, wie z. B. der Atkins-Diät, werden die Fette stattdessen zu Ketonkörpern verstoffwechselt.

Zusätzlich zur mitochondrialen Fettsäureoxidation findet auch in den Peroxisomen eine Verwertung von Fettsäuren statt. Vor allem sehr langkettige Fettsäuren werden meist dort zuerst verkürzt, ehe sie in den Mitochondrien weiterverarbeitet werden können. Diese peroxisomale Funktion ist erheblich. Ein Ausfall führt zu Adrenoleukodystrophie.

Fettsäuresynthese

Die Fettsäuresynthese erfolgt im Gegensatz zum Abbau im Cytosol. Bei höheren Organismen sind alle dafür notwendigen Enzyme in einem einzigen Enzymkomplex, der Fettsäure-Synthase zusammengefasst. Bei grünen Pflanzen jedoch findet der Aufbau bis höchstens zur C18 Fettsäure hauptsächlich in den Plastiden statt und wird dann erst ins Cytosol transportiert.

Dazu wird zuerst Malonyl-CoA aus Acetyl-CoA unter ATP-Verbrauch durch Carboxylierung gebildet. Dieses wird dann zu Malonyl-ACP umgewandelt, denn im Gegensatz zum Abbau dient bei der Synthese Acyl carrier protein (ACP) statt CoA als Carriermolekül. Die nachfolgende Kondensationsreaktion ist grob betrachtet eine Umkehr der Fettsäureoxidation (β-Oxidation). Jedoch finden sich im Detail einige bedeutende Unterschiede, die eine unabhängige, gezielte Steuerung beider Vorgänge erlauben.

Gesundheitliche Bedeutung

Gesättigte Fettsäuren liefern viel Energie, sind jedoch nicht essentiell. Fette mit hohem Anteil an mittelkettigen Fettsäuren sind einfacher zu verdauen als solche mit langkettigen Fettsäuren. trans-Fettsäuren wirken sich ungünstig auf den Cholesterinspiegel und das Herzinfarkt-Risiko aus. Omega-6-Fettsäuren werden zu entzündungsfördernden Prostaglandinen verstoffwechselt, Omega-3-Fettsäuren zu entzündungshemmenden.

Von der DGE wird empfohlen, etwa 30 % des Energiebedarfs mit Fett zu decken. 10 % sollte mit gesättigten Fettsäuren gedeckt werden, 10 bis 13 % mit einfach ungesättigten und der Rest mit mehrfach ungesättigten. Um das Herz-Kreislauf-Risiko gering zu halten, sollte das Verhältnis von Omega-6- zu Omega-3-Fettsäuren maximal 5:1 betragen.

Siehe auch

Quellen

  1. vgl. Datenbank Samenfettsäuren, http://sofa.bfel.de/
  2. Bundesforschungsanstalt für Ernährung und Lebensmittel

Literatur

  • W. H. Kunau: Chemie und Biochemie ungesättigter Fettsäuren. Angewandte Chemie 88, 97 (1976)
  • J. Ernst, W.S. Sheldrick und J.-H. Fuhrhop: Die Strukturen der essentiellen ungesättigten Fettsäuren. Kristallstruktur der Linolsäure sowie Nachweis für die Kristallstrukturen der Linolensäure und der Arachidonsäure. Z. Naturf. 1979, 34b, 706–711
  • P. Nuhn, M. Gutheil, B. Dobner: Vorkommen, Biosynthese und Bedeutung verzweigter Fettsäuren. Fette-Seifen-Anstrichmittel 87, 135 (1985)
 
Dieser Artikel basiert auf dem Artikel Fettsäure aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.