Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
GMR-Effekt
Der GMR-Effekt (engl. giant magnetoresistance, dt. „Riesenmagnetwiderstand“) wird in Strukturen beobachtet, die aus sich abwechselnden magnetischen und nichtmagnetischen dünnen Schichten mit einigen Nanometern Schichtdicke bestehen. Der Effekt bewirkt, dass der elektrische Widerstand der Struktur von der gegenseitigen Orientierung der Magnetisierung der magnetischen Schichten abhängt, und zwar ist er bei Magnetisierung in entgegengesetzte Richtungen deutlich höher als bei Magnetisierung in die gleiche Richtung. Weiteres empfehlenswertes Fachwissen
EntdeckungDer Effekt wurde zuerst 1988 von Peter Grünberg vom Forschungszentrum Jülich und Albert Fert der Universität Paris-Süd in voneinander unabhängiger Arbeit entdeckt, wofür sie 2007 gemeinsam mit dem Nobelpreis für Physik ausgezeichnet wurden.[1] ErklärungBeim GMR-Effekt handelt es sich um einen quantenmechanischen Effekt, der durch die Spinabhängigkeit der Streuung von Elektronen an Grenzflächen erklärt werden kann. Elektronen, die sich in einer der beiden ferromagnetischen Schichten gut ausbreiten können, weil ihr Spin günstig orientiert ist, werden in der zweiten ferromagnetischen Schicht stark gestreut, wenn diese entgegengesetzt magnetisiert ist. Sie durchlaufen die zweite Schicht aber wesentlich leichter, wenn die Magnetisierung dieselbe Richtung aufweist wie in der ersten Schicht. AnwendungWerden zwei Schichten eines ferromagnetischen Materials durch eine dünne nichtmagnetische Schicht getrennt, so richten sich die Magnetisierungen bei bestimmten Dicken der Zwischenschicht in entgegengesetzten Richtungen aus. Schon kleine äußere magnetische Felder reichen aber aus, um diese antiferromagnetische Ordnung wieder in die ferromagnetische Ordnung zurückzuführen. In Verbindung mit dem GMR-Effekt bewirken Variationen des äußeren Magnetfeldes in geeigneten Strukturen daher große Änderungen des elektrischen Widerstandes der Struktur. Die Möglichkeiten, den Effekt in einem Sensor für ein magnetisches Feld einzusetzen (und damit als einen neuen Typ von Lesekopf in einer Computerfestplatte), wurden schnell durch ein von Stuart Parkin geleitetes IBM-Forschungsteam entdeckt, indem er zeigte, dass der Effekt auch in polykristallinen Schichten auftritt. In der Anwendung des Effektes unterscheidet man heute folgende Fälle:
Kommerzielle NutzungIBM stellte im Dezember 1997 das erste kommerzielle Laufwerk her, das diesen Effekt nutzte. Neben der Anwendung in Festplatten wird der GMR-Effekt auch in Magnetfeldsensoren der Automobilindustrie und Automatisierungsindustrie ausgenutzt. Die Nutzung des Effektes in nichtflüchtigen Speichermedien (siehe MRAM) hat im Jahr 2007 noch keine Marktreife erreicht. Aktuelle EntwicklungenDerzeitig konzentriert sich die Forschung auf den Einsatz von mehrschichtigen Nanodrähten (die eine größere Empfindlichkeit als die gegenwärtig genutzten Filme bieten). Quellen
Siehe auch
Kategorien: Festkörperphysik | Magnetismus |
|
Dieser Artikel basiert auf dem Artikel GMR-Effekt aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |