Meine Merkliste
my.chemie.de  
Login  

Gammaspektroskopie



Gammaspektroskopie ist die Messung des Spektrums der Gammastrahlung einer radioaktiven Strahlungsquelle. Gammaquanten haben nicht beliebige, sondern bestimmte (diskrete), für das jeweilige Nuklid charakteristische Energien, ähnlich wie in der optischen Spektroskopie die Spektrallinien für die in der Probe enthaltenen Stoffe charakteristisch sind. Deshalb ist die Gammaspektroskopie eine wichtige Methode zur Untersuchung radioaktiver Substanzen, beispielsweise radioaktiver Abfälle, um über deren Behandlung entscheiden zu können.

Inhaltsverzeichnis

Aufbau eines Gammaspektrometers

Detektor

  Hauptteil der Messapparatur, des Gammaspektrometers, ist ein geeigneter Strahlungsdetektor. Für die meisten Gammastrahler mit ihren Energien zwischen etwa 50 keV und einigen MeV eignen sich am besten Halbleiterdetektoren aus hochreinem Germanium (High Purity Germanium, Kurzbezeichnung HPGe) oder auch weniger reinem, mit Lithium dotiertem ("gedriftetem") Germanium (Kurzbezeichnung Ge(Li)). Für den Energiebereich unterhalb 50 keV eignen sich lithium-gedriftete Silizium-Detektoren (Kurzbezeichnung Si(Li)).

HPGe-Detektoren werden im Betrieb zur Vermeidung der von thermischen Vorgängen erzeugten "Rausch"signale mit flüssigem Stickstoff gekühlt. Die lithiumgedrifteten Detektoren benötigen diese Kühlung sogar ständig, auch während Lagerung und Transport.

Außer Halbleiterdetektoren werden auch Szintillationsdetektoren mit Einkristallen aus Natriumjodid oder Bismutgermanat (BGO) verwendet. Ihr Vorteil ist, dass sie mit größeren Abmessungen als die Halbleiterdetektoren hergestellt werden können, so dass eine höhere Ansprechwahrscheinlichkeit des Detektors erreicht wird. Diese ist wichtig, wenn Strahlung sehr geringer Intensität gemessen werden soll, etwa bei der Untersuchung von Personen auf Radioaktivität im Körper. Szintillationsdetektoren brauchen keine Kühlung. Ihr Nachteil ist das wesentlich geringere Energieauflösungsvermögen (siehe unten).

Aufzeichnung des Spektrums

     


Die vom Detektor erzeugten elektrischen Impulse werden zur Gewinnung des Spektrums über einen Verstärker meist einem Vielkanalanalysator zugeführt. In einfachen Fällen, etwa zu Lernzwecken in Unterrichtslaboratorien, kann statt dessen auch ein Einkanalanalysator mit einem nachgeschalteten elektronischen Zählwerk verwendet werden; hierbei wird das Spektrum zeitlich nacheinander, Energiebereich für Energiebereich, registriert. Die Einkanalmethode liefert daher ein unverzerrtes Spektrum nur bei solchen Nukliden, deren Halbwertszeit lang im Vergleich zur Dauer der Messung ist.

In der Darstellung des Spektrums wird normalerweise die Energie waagerecht (als Kanalnummer) und die Intensität senkrecht (als Kanalinhalt) aufgetragen.

Die beiden Abbildungen zeigen Szintillationsdetektor-Spektren von Cäsium-137 und Cobalt-60.

Quantenenergie und Impulshöhe

Es gibt im wesentlichen drei verschiedene Prozesse, durch die ein Gammaquant Ionisation und damit einen Detektorimpuls hervorrufen kann. Dabei ergeben schon Quanten einer einheitlichen Energie eine charakteristische Verteilung von Impulshöhen.

Nur die größte Impulshöhe, das lokale Maximum, das der eigentlichen Gammaenergie entspricht, der Fotopeak oder Full Energy Peak (FEP), wird für die Spektroskopie herangezogen. Diejenigen Impulse, die weniger als der vollen Energie entsprechen, bilden das Compton-Kontinuum. In den Abbildungen ist dieser kontinuierliche Teil mit weiteren, darauf aufsitzenden Peaks deutlich sichtbar.

Messgrößen Energie und Intensität

Gemessen werden sowohl die Energie jedes registrierten Photons als auch die Intensität jeder Spektrallinie. Um Nuklide indentifizieren und beispielsweise ihre Aktivität bestimmen zu können, muss das Spektrometer hinsichtlich beider Messgrößen kalibriert sein.

Energie-Kalibration

Die Energie-Kalibration erfolgt mit Hilfe der Gammaenergien bekannter Nuklide eines Präparates. Unter Umständen genügen auch bekannte Gammaenergien des aus der Umgebung herrührenden Strahlungs-"Untergrundes" wie z. B. die Linie des Kalium-40 bei 1461 keV und die Annihilationslinie von Positronen aus der sekundären kosmischen Strahlung bei 511 keV. Die Impulshöhe (Kanalnummer) entspricht meist so genau linear der Photonenenergie, dass zwei Gammalinien als Kalibrationspunkte ausreichen, um die Zuordnung Kanalnummer-Energie für das gesamte Spektrum zu erhalten.

Intensitäts-Kalibration

Das Intensitätsmaß ist die Zählrate (Zahl der Impulse pro Zeiteinheit) bei einer Quanten-Energie (graphisch: die Fläche unter dem jeweiligen Photopeak). Die interessierende Größe ist entweder die Flussdichte der Photonen am Ort des Detektors oder meistens die Aktivität (Physik) des betreffenden Nuklids in der gemessenen Probe. Soll eine dieser Größen absolut bestimmt werden, muss die Zählausbeute oder Ansprechwahrscheinlichkeit des Detektors als Funktion der Gamma-Energie kalibriert werden.

Dazu sind Messungen mit Kalibrations-Standards bekannter Zusammensetzung UND Aktivität erforderlich, die man beispielsweise von der PTB beziehen kann. Solche Standards emittieren Gammaquanten verschiedener Energien. Die damit gemessenen Zählraten ergeben Messpunkte, aus denen für den Bereich zwischen der niedrigsten und der höchsten bei der Kalibrationsmessung verwendeten Gammaenergie durch rechnerische (früher grafische) Interpolation eine Kalibrationskurve gewonnen wird. Die Ansprechwahrscheinlichkeit außerhalb dieses Bereiches ist damit nicht kalibrierbar, weil die dann erforderliche EXTRApolation keine ausreichende Genauigkeit liefern würde. Die Intensitäts-Kalibrationskurve ist nicht linear.

Wird eine solche Intensitäts-Kalibration durchgeführt, so ist eine Energie-Kalibration (siehe oben) dabei zwangsläufig mit eingeschlossen.

Energieauflösung

Die Energieauflösung ist der kleinste Abstand zweier Energien, bei dem die beiden Photopeaks noch getrennt ausgewertet werden können. Sie entspricht etwa der Halbwertsbreite jedes Peaks. Halbleiterdetektoren erreichen eine Halbwertsbreite von unter 2 keV, so dass auch noch sehr dicht liegende Gammalinien getrennt werden können. Bei einem Szintillationsdetektor ist dagegen beispielsweise, wie eine der Abbildungen zeigt, der 662-KeV-Photopeak des Cs-137 rund 70 keV breit. Szintillationsdetektoren sind daher vor allem dort geeignet, wo die Art des Nuklids bekannt ist und es weniger um eigentliche Spektroskopie als um die mengenmäßige Bestimmung geht.

Um die Energieauflösung des Detektors auszunutzen, muss die digitale Auflösung, d. h. die Anzahl der Kanäle für die Registrierung des Spektrums, passend gewählt werden. Für einen Messbereich 0 bis 2 MeV oder 0 bis 4 MeV sind z. B. bei einem Halbleiterdetektor 4096 bzw. 8192 Kanäle sinnvoll; bei einem Szintillationsdetektor genügen 512 oder 1024 Kanäle.

 
Dieser Artikel basiert auf dem Artikel Gammaspektroskopie aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.