Meine Merkliste
my.chemie.de  
Login  

Hägg-Diagramm



Das Hägg-Diagramm dient in der analytischen Chemie dazu, sich schnell einen Überblick über die Verhältnisse einer wässrigen Säure-, Base- oder Salzlösung bekannter Konzentration zu machen. Es liefert eine doppelt-logarithmische Darstellung der Konzentrationsverhältnisse eines konjugierten Säure-Base Paares in Abhängigkeit vom vorliegenden pH-Wert und wird auch für Titrationen verwendet.

Die Darstellung geht auf den schwedischen Chemiker Gunnar Hägg zurück.

Inhaltsverzeichnis

Prinzip und Konstruktion

Im Vergleich zur einfach-logarithmischen Darstellung der regulären Titrationskurve, wo der Titrationsgrad gegen den pH-Wert aufgezeichnet ist, wird hier auch die betrachtete Konzentration logarithmiert, da sich die Konzentrationsänderungen bei Titrationen über viele Zehnerpotenzen erstrecken.

Auf der Abszisse wird der pH-Wert aufgetragen; auf der Ordinate der negative dekadische Logarithmus der Formalkonzentration des zu betrachtenden Stoffes. Stellt man das Massenwirkungsgesetz des gesuchten Säure-Base-Paares um und löst es so auf, dass die Konzentration von Säure und konjugierter Base nur noch von Säurekonstante, Hydronium-Konzentration und Anfangskonzentration abhängen. Nach dem logarithmieren der erhaltenen Gleichungen erhält man Kurven mit schrägen und waagerechten Assymptoten, die sich für die Bereiche pH < pKs und pH > pKs leicht durch simple Geraden mit den Steigungen 0 und 1 annähern lassen. Für die Hydronium-Konzentration ergibt sich eine Ursprungsgeraden, die Hydroxid-Konzentration ist entsprechend dazu orthogonal und schneidet sie im Neutralpunkt mit pH=7, da hier beide Konzentrationen gleich sind. Mehrprotonige Säuren lassen sich einfach durch Aneinandersetzen der Hägg-Diagramme der einzelnen Protolysestufen erhalten; man geht hier von näherungsweise unabhängigen Gleichgewichten aus.

Markante Punkte bei der Titration

Die Näherungen des Hägg-Diagrammes sind verblüffend genau, lediglich für den Bereich plus minus eine pH-Einheit um den Punkt pH = pKs sinkt die Genauigkeit.

Markante Punkte lassen sich durch Betrachtungen der Gleichgewichte im Verlauf einer fiktiven Titration ablesen.

  • So liegt am Anfang nur die Konzentration der Säure vor, diese bestimmt den pH-Wert der Lösung, indem sie in konjugierte Base und Proton dissoziert. Dementsprechend liegt der Anfangspunkt am Schnittpunkt der Geraden von Basen- und Hydronium-Konzentration.
  • Am Pufferpunkt liegen gleiche Konzentrationen von Säure und konjugierter Base vor, sodass auch hier einfach der entsprechende Schnittpunkt herangezogen werden kann.
  • Am Äquivalenzpunkt liegt nur noch konjugierte Base vor; diese zerfällt mit Wasser zu Hydroxid und Säure, den pH-Wert liefert der Schnittpunkt dieser Konzentrationsgeraden.

Darüber hinaus sind weitere Aussagen über die Titriergenauigkeit, also den Dissoziationsgrad der konjugierten Base am Äquivalenzpunkt, sowie über weitere Konzentrationsverhältnisse für jeden beliebigen pH-Wert möglich.

Hierzu liest man an den entsprechenden Punkten den Logarithmus ab und berechnet daraus die vorliegende Konzentration.

Umgekehrt logarithmiert man bei gesuchten pH-Werten das vorliegende Konzentrationsverhältnis (z.B. 90% Titration: nur noch 10% der ursprünglichen Säurekonzentration sind vorhanden) in den Logarithmus um und ermittelt so graphisch den gesuchten pH-Wert

Andere Anwendungen des Hägg-Diagrammes

Die doppelt-logarithmische Darstellung lässt sich nicht nur für Protolyse-Gleichgewichte verwenden, sondern theoretisch auf alle Gleichgewichtssysteme, also auch Redox- und Löslichkeitsgleichgewichte übertragen. Es ergeben sich ähnlich einfach zu konstruierende Schaubilder.

  • Für Redoxgleichgewichte trägt man statt des pH-Wertes das Redox-Potential auf der Abszisse auf; die analogen Gleichungen ergeben sich aus der logarithmischen Umstellung der Nernstschen Gleichung.
  • Beispielsweise für die simultane argentometrische Titration von Halogeniden und Pseudohalogeniden lässt sich ebenfalls ein Hägg-Diagramm formulieren; auf der Abszisse wird die logarithmierte Silberkonzentration aufgetragen; die Gleichungen ergeben sich aus der Logarithmierung der Löslichkeitsgleichgewichte.

Literatur

  • Udo R. Kunze: Grundlagen der quantitativen Analyse. Thieme Verlag, Stuttgart 1990, ISBN 3-13585-803-0
 
Dieser Artikel basiert auf dem Artikel Hägg-Diagramm aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.