Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Heisenbergsche BewegungsgleichungDie heisenbergsche Bewegungsgleichung entspricht der zeitlichen Entwicklung eines quantenmechanischen Systems in der Matrixdarstellung (oder auch in der Heisenberg-Darstellung der Quantenmechanik). Sie wurde von Werner Heisenberg in den 1920er Jahren entwickelt. Der wesentliche Unterschied zur Formulierung der Quantenmechanik über die Schrödingergleichung ist, dass in diesem Fall die Zustände die zeitliche Dynamik tragen und die Operatoren konstant sind, hingegen in der Heisenberg-Darstellung die Operatoren die zeitliche Dynamik tragen, während der Zustandsvektor, auf den die Operatoren wirken, zeitlich konstant ist. Daher ist die Heisenbergsche Formulierung näher an der klassischen Mechanik, was sich auch durch die formale Ähnlichkeit der klassischen Bewegungsgleichungen, ausgedrückt mit Hilfe der Poisson-Klammern zeigt. Weiteres empfehlenswertes FachwissenDie Heisenbergsche Bewegungsgleichung ersetzt im Heisenberg-Bild der Quantenmechanik die Schrödinger-Gleichung des Schrödinger-Bildes. Die Bewegungsgleichung selbst lautet: wobei der Hamilton-Operator des Systems und ein Kommutator ist. Sofern nicht explizit zeitabhängig ist, das heißt , so genügt der Heisenbergschen Bewegungsgleichung, wobei der zu adjungierte Operator ist. Der Operator der zeitlichen Entwicklung genügt der Gleichung und gleicht für nicht explizit zeitabhängige Siehe auch: Wellenfunktion |
Dieser Artikel basiert auf dem Artikel Heisenbergsche_Bewegungsgleichung aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |