Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Hohe HarmonischeHohe Harmonische sind ein Phänomen der Hochintensitätslaserphysik, oder der Atomphysik in starken elektromagnetischen Feldern. Durch Fokussieren eines intensiven Femtosekundenlaserimpulses in – zumeist – einem Gas unter Vakuum erzeugt, werden zahlreiche höhere Harmonische der Laserfrequenz beobachtet. Dies Licht mit ungeraden Vielfachen der ursprünglichen Laserfrequenz reicht üblicherweise bis ins Ultraviolette, oder den weichen Röntgenbereich. Charakteristisch ist, dass eine Vielzahl dieser harmonischen Ordnungen mit ähnlicher Intensität erzeugt wird, bevor die Effizienz des Prozesses abnimmt. Weiteres empfehlenswertes FachwissenHohe Harmonische stellen für den Bereich unterhalb 100 nm Wellenlänge eine einfache Methode dar, kohärentes Licht oder Laserlicht in diesem Spektralbereich zu erzeugen. Der Prozess, der der Erzeugung der hohen Harmonischen zugrunde liegt, findet ebenfalls Anwendung bei der Erzeugung von Attosekunden-Laserpulsen. (Paul und Krausz, 2001) ErzeugungDie Lichtintensitäten, bei denen die Erzeugung Hoher Harmonischer normalerweise auftritt, liegen im Bereich von 1014 W/cm2. Diese werden durch Bündelung eines Laserimpulses mit einer Dauer von 50 fs und kürzer sowie einer Impulsenergie von wenigen mJ erreicht. Hierbei gilt, dass kürzere Impulse weniger Energie erfordern. Bei diesen Intensitäten erreicht das elektrische Feld des Lichts die Stärke des elektrischen Felds im einzelnen Atom. Dies wird durch das Laserfeld so gestört, dass Elektronen aus dem Atom ins Kontinuum tunneln können. Dies ist Schritt 1 des sogenannten „Drei-Schritt-Modells“ (siehe Grafik):
Da dieser Prozess nach jedem Maximum des Laserfelds eines Laserimpulses längerer Dauer passieren kann und zwei dieser Maxima je Laserzyklus auftreten, kann man aus der Fouriertransformation der Emission schließen, dass ungerade Vielfache der Laserfrequenz erzeugt werden, wohingegen die geraden Vielfachen aus Symmetriegründen wegfallen. Seit der Verfügbarkeit von Laserimpulsdauern im Bereich weniger Femtosekunden und damit Laserzyklen [2] kann die Erzeugung Hoher Harmonischer so beherrscht werden, dass nur zu einem einzigen Zeitpunkt (im Verlauf des Laserimpulses) Rekombination möglich ist. Dies führt zur Emission eines UV/XUV-Kontinuums, die diskreten Ordnungen verschwinden. AnwendungenHohe Harmonische ermöglichen die Erzeugung von Laserlicht in bisher nahezu unmöglichen Spektralbereichen, mit einer spektralen Bandbreite, die die Erzeugung von Lichtimpulsen ermöglicht, deren Dauer im Attosekundenbereich liegt. Diese Lichtimpulse ermöglichen erstmals zeitaufgelöste Experimente von inneratomarer Elektronendynamik und die Steuerung von Elektronen auf ihrer natürlichen Zeitskala [3][4]. Frühere Anwendungen schließen unter anderem die Radiographie und Spektroskopie verschiedener Objekte ein. Des Weiteren werden Hohe Harmonische zur Röntgenholographie und zum "Seeding" von Freie-Elektronen-Lasern benutzt. In letzter Konsequenz sind die Attosekundenpulse die Fortführung der Ultrakurzzeitphysik, die mit der Verfügbarkeit von Femtosekundenpulsen begann. Literatur
|
Dieser Artikel basiert auf dem Artikel Hohe_Harmonische aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |