Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
AtomkernDer Atomkern bildet den Kern des Atoms. Kenntnisse über die Eigenschaften von Atomkernen sind zum Verständnis beispielsweise der Radioaktivität, der Kernspaltung (Kernkraftwerk, Kernreaktor, Atombombe) und der Kernfusion (Kernfusionsreaktor, Wasserstoffbombe) notwendig. Von dem lateinischen Wort für Kern (nucleus) leitet sich der Begriff nuklear ab. Er bezeichnet Dinge oder Wirkungen, die mit Eigenschaften oder mit Reaktionen von Atomkernen zusammenhängen, beispielsweise Nuklearmedizin. Eine Atomkernsorte heißt zur Unterscheidung von einem einzelnen Kern Nuklid. Weiteres empfehlenswertes Fachwissen
Aufbau des AtomkernsBestandteileDer Atomkern besteht aus Protonen und Neutronen, die zusammen auch Nukleonen genannt werden. Er befindet sich, anschaulich gesprochen, im Zentrum des Atoms und ist etwa 10.000 bis 100.000 mal kleiner als die Elektronenhülle, konzentriert aber in sich mehr als 99,9 % der Masse/Energie des gesamten Atoms. Die Gesamtzahl der Nukleonen im Kern heißt deshalb auch Massenzahl. Mit steigender Massenzahl nimmt allgemein die Dichte des Materials zu. Beispielsweise wiegt Lithium (Massenzahl 6 und 7) 0,53 g/cm³, Gold (Massenzahl 197) dagegen 19,3 g/cm³. Sogenannte schwere Atomkerne gehören also zu auch umgangssprachlich/technisch schweren Elementen. Neutronen besitzen keine elektrische Ladung. Protonen sind jedoch positiv geladen. Infolgedessen ist der Atomkern elektrisch positiv geladen und kann über die Coulombkraft negativ geladene Elektronen an sich binden. Da die elektrische Ladung des Elektrons bis auf das Vorzeichen gleich der Ladung des Protons ist, muss ein nach außen hin elektrisch neutrales Atom ebenso viele Elektronen in der so genannten Elektronenhülle besitzen, wie Protonen im Kern. In diesem Zustand befinden sich die Atome nur als chemische Elemente. Werden durch chemische Effekte Elektronen entfernt oder hinzugefügt, sind die Atome nach außen hin elektrisch geladen und werden Ionen genannt. Im Atomkern ändert sich dadurch nichts. Eine Atomkernsorte (Nuklid) ist durch bestimmte Zahlen von Protonen und Neutronen bestimmt. Die Zahl der Protonen heißt Ordnungszahl oder Kernladungszahl. Sie bestimmt, zu welchem Element das Atom gehört. Nuklide gleicher Ordnungszahl werden als Isotope bezeichnet. Die Zahl der Neutronen hat nur geringeren Einfluss auf die chemischen Eigenschaften des Atoms, ist aber für die Stabilität oder Instabilität (Radioaktivität) des Kerns entscheidend. Nuklide mit gleich vielen Protonen und Neutronen, aber unterschiedlichem innerem Anregungszustand (siehe unten) werden Isomere genannt. Bezeichnet werden Nuklide mit dem chemischen Elementsymbol und der Massenzahl, wie z. B. das häufigste Kohlenstoffisotop 12C oder das häufigste Eisenisotop 56Fe (bei Isomeren noch mit einem Zusatz wie „i“). Noch vollständiger ist die Schreibweise mit Massenzahl und Ordnungszahl: . Kernkraft und CoulombkraftDie positiv geladenen Protonen im Kern stoßen sich gegenseitig aufgrund der Coulombkraft ab. Da der Kern jedoch trotzdem nicht auseinander fliegt, muss im Kern eine weitere Kraft existieren, durch die sich die Nukleonen gegenseitig anziehen und die stärker ist als die Coulombkraft. Diese Kraft wird als Starke Wechselwirkung oder Kernkraft bezeichnet (nicht zu verwechseln mit dem umgangssprachlichen Ausdruck „Kernkraft“ für Kernenergie!). Die Kernkraft ist sehr kompliziert und bis heute nur näherungsweise beschrieben. Ihre Aufklärung ist unter anderem Gegenstand der Kernphysik. Gesichert ist allerdings die sehr kurze Reichweite der Kernkraft, die von der Größenordnung des Nukleon-Durchmessers (etwa 1 fm = 10 -15 m) ist. Sie bewirkt, dass es keine beliebig großen Kerne gibt, denn ein Proton an der „Oberfläche“ eines großen Kerns spürt Anziehung nur von seinen nächsten Nachbar-Nukleonen, Coulomb-Abstoßung hingegen von allen anderen Protonen des Kerns. Sind genügend viele andere Protonen vorhanden, überwiegt daher schließlich die Abstoßung. BindungsenergieDie Bindungsenergie ist anschaulich die Arbeit, die aufgewandt werden müsste, um den Kern in seine einzelnen Nukleonen zu zerlegen. Die Bindungsenergie pro Nukleon - also Bindungsenergie geteilt durch Massenzahl - ist in verschiedenen Kernen verschieden. Kerne mit geringerer Bindungsenergie wandeln sich durch radioaktiven „Zerfall“ in fester gebundene Kerne um; nur etwa 270 der insgesamt bekannten über 1000 Nuklide sind stabil. Auf Unterschieden der Bindungsenergie pro Nukleon beruht auch der Energiegewinn oder -verlust bei Kernreaktionen, also insbesondere die Möglichkeit, Energie im technischen Maßstab aus Kernreaktionen zu gewinnen. EnergieniveausKerne haben wie Atome diskrete Energieniveaus. (Anders als beim Atom setzt sich die Folge dieser Niveaus aber auch oberhalb der Bindungsenergie eines Nukleons noch fort, was sich beispielsweise in den Resonanzen der Anregungsfunktion von Kernreaktionen zeigt.) Ein ungestörter Kern befindet sich normalerweise in seinem tiefsten Energieniveau, dem Grundzustand. Die höheren Niveaus (angeregte Zustände) sind nicht stabil, sondern der Kern geht früher oder später von dort in den Grundzustand über, wobei die Energiedifferenz als Photon (Gammastrahlung) abgegeben wird. Besonders langlebige (metastabile) angeregte Zustände werden als Kernisomere bezeichnet. RadioaktivitätHauptartikel: Radioaktivität Alpha-Zerfall, SpontanspaltungWegen des oben genannten Reichweitenunterschieds der Kräfte verringert sich die Bindungsenergie pro Nukleon zu hohen Massenzahlen hin. Daher tritt bei manchen Nukliden mit Massenzahlen oberhalb etwa 140 Alpha-Zerfall auf, oberhalb etwa 230 auch Spontane Spaltung. Beide Zerfallsarten führen zu Nukliden mit geringeren Massenzahlen. Beta-ZerfallBeim Betazerfall wird aus dem Kern eines Radionuklids ein Elektron oder Positron abgegeben. Dieses entsteht, indem sich im Kern eines der Neutronen in ein Proton, ein Antineutrino und ein Elektron bzw. eines der Protonen in ein Neutron, ein Neutrino und ein Positron umwandelt. Gamma-ZerfallDie Abgabe von Gammastrahlung setzt voraus, dass der Kern in einem angeregten Zustand ist (siehe oben) und tritt daher hauptsächlich unmittelbar nach einem Alpha- oder Betazerfall auf, sofern dieser nicht direkt zum Grundzustand des Tochterkerns führt. Deshalb wird die Gamma-Emission analog den anderen Prozessen der Radioaktivität manchmal als Gamma„zerfall“ bezeichnet. KernmodelleIm Vergleich zur Atomphysik mit dem quantenmechanischen Atommodell, wo lediglich die elektromagnetische Wechselwirkung eine Rolle spielt, existiert in der Kernphysik kein Modell zur umfassenden Beschreibung aller Vorgänge im Atomkern. So gibt es verschiedene Modelle für unterschiedliche Fragestellungen. Ähnlich dem Schalenmodell in der Atomphysik gibt es auch in der Kernphysik ein Schalenmodell, das es erlaubt, die Energiezustände eines einzelnen Nukleons trotz fehlendem Zentralpotenzial in einem mittleren Potenzial zu berechnen. Die meisten angeregten Zustände eines Atomkerns können jedoch nur durch die kollektive Anregung mehrerer Nukleonen erklärt werden. Für die Beschreibung solcher Zustände kann man das kollektive Modell heranziehen. Die Eigenschaften von großen Atomkernen werden durch ein vibrierendes Tröpfchenmodell beschrieben.
Neben diesen beiden gängigen Modellen gibt es weitere (das folgende orientiert sich stark an Flügge 1957):
Zwischen den einzelnen Modellen lassen sich folgende Beziehungen aufstellen:
Jedes der genannten Modelle ist nur für einen bestimmten nuklearen Phänomenbereich anwendbar. Es gibt keine konsistente Theorie, die alle nuklearen Phänomene umfasst. Literatur
Siehe auchVideos
Kategorien: Kernphysik | Atomphysik | Kernchemie |
|
Dieser Artikel basiert auf dem Artikel Atomkern aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |