Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
PyroxengruppeAls Pyroxengruppe bezeichnet man Minerale aus der Mineralklasse Silikate und Germanate, sowie der Abteilung der Kettensilikate, deren Kristallstruktur sich durch Einfachketten aus eckenverknüpften SiO4-Tetraedern auszeichnet und deren Zusammensetzung der folgenden verallgemeinerten Summenformel genügt: M1 M2 T2O6. In dieser Strukturformel repräsentieren M1, M2 und T unterschiedliche Positionen in der Pyroxenstruktur. Sie werden vorwiegend durch folgende Kationen belegt:
Fett hervorgehoben sind die dominierenden Kationen auf den einzelnen Positionen. Pyroxene zeigen eine große chemische Variabilität und treten weltweit in sehr vielen verschiedenen Paragenesen und geologischen Milieus auf. Sie sind wichtiger Bestandteil sowohl magmatischer wie auch metamorpher Gesteine unterschiedlichster Zusammensetzung und Bildungsbedingungen. Pyroxene haben eine Härte zwischen 5 und 6,5 sowie eine bleichgrüne bis bräunlichgrüne oder bronzene Farbe. Strichfarbe ist ein grünliches Weiß. Eine sehr ähnliche Mineralgruppe sind die Amphibole; Pyroxen unterscheidet sich von diesen jedoch in der Spaltbarkeit; die Spaltwinkel bei Pyroxenen liegen bei 90 Grad, während sie bei Amphibol 120 Grad betragen.
Weiteres empfehlenswertes Fachwissen
Etymologie und GeschichteDer Name Pyroxen stammt aus dem Griechischen von pyros (Feuer) und xenos (fremd). Er spielt darauf an, dass Pyroxene vor allem in Vulkanlava auftreten, wo sie als Kristalleinschlüsse von Vulkanglas gefunden werden können; früher wurde angenommen, es handele sich nur um Verunreinigungen des Glases, so dass der Name „Feuerfremde“ entstand. Tatsächlich aber handelt es sich bei den Pyroxenen um Minerale, die vor der Lavaeruption kristallisieren. Klassifizierung und NomenklaturBasis einer korrekten Benennung eines Pyroxens ist eine vollständige chemische Analyse und die Anwendung eines vorgegebenen Berechnungsschemas, mit dem die genauen Gehalte der einzelnen Elemente normiert und auf die einzelnen Positionen (M1, M2, T) aufgeteilt werden. Die Internationale Mineralogische Vereinigung (IMA) teilt die Pyroxene nach ihrer Zusammensetzung in 6 Gruppen ein:
In diesen sechs Gruppen werden 20 Basisnamen für Pyroxene festgelegt. Bedeutenden Abweichungen von den im Anschluss aufgeführten Zusammensetzungen wird durch vorangestellte Adjektive (titanreich, eisenreich, …) Rechnung getragen. In den im folgenden angegebenen Strukturformeln können sich die in Klammern stehenden Atome in beliebiger Mischung durch Substitution vertreten, stehen aber immer im selben Verhältnis zu den anderen Atomgruppen. Hier werden lediglich die idealisierten Zusammensetzungen der verschiedenen Pyroxene aufgeführt. Die Gültigkeit der Mineralnamen erstreckt sich jeweils über einen größeren Zusammensetzungsbereich. So werden z.B. alle Ca-armen Mg-Fe-Pyroxene mit Mg-Gehalten von 0 bis 1 Fe2+ als Enstatit bzw. Clinoenstatit bezeichnet. Mg-Fe-PyroxeneMg-Fe-Pyroxene kommen sowohl mit orthorhombischer wie auch monokliner Symmetrie vor. Folgende Endglieder bilden die Grenzen der Mg-Fe-Pyroxene:
Mn-Mg-PyroxeneMg-Mn-Pyroxene kommen sowohl mit orthorhombischer wie auch monokliner Symmetrie vor.
Ca-PyroxeneAlle Ca-Pyroxene kristallisieren mit monokliner Symmetrie.
Ca-Na-Pyroxene
Na-Pyroxene
Li-Pyroxene
Die Zusammensetzungen natürlich auftretender Pyroxene liegen häufig zwischen den idealisierten Zusammensetungen dieser Gruppen. Entsprechend wurde eine weitere, gröbere Einteilung entwickelt, die dieser komplexen Mischbarkeit von Kationen auf den Positionen M1 und M2 Rechnung trägt. Danach werden vier chemische Gruppen unterschieden:
Nach der Symmetrie werden Pyroxene weiterhin in zwei Gruppen unterteilt:
Bildung und FundortePyroxene kommen sowohl massiv, in gekörnter Form als auch als meist dunkle, kurze, prismenförmige Kristalle vor. Als gesteinsbildende Minerale finden sie sich häufig in quarzarmen magmatischen Gesteinen wie Basalt, Gabbro und Pyroxenit. Kalziumreiche Klinopyroxene sind daneben auch in metamorphisiertem Kalkstein enthalten, während in Steinmeteoriten in erster Linie Orthopyroxene vorkommen. StrukturDie Variationsbreite der chemischen Zusammensetzung der Pyroxene findet ihre Erklärung in ihrer Struktur. Sie weist Kationenpositionen von sehr unterschiedlicher Größe und Form auf und bietet so einer Vielzahl von Kationen unterschiedlichster Größe und Ladung platz. Auf allen diesen Kationenpositionen sind die Kationen von Sauerstoffanionen umgeben. Die verschiedenen Positionen unterscheiden sich in der Anzahl der umgebenden Anionen (Koordinationszahl), deren Abstand zum Kation und Anordnung um das Kation herum. Generell gilt: Je mehr Anionen ein Kationen umgeben, desto größer wird der mittlere Abstand von der Kationenposition zu den Anionen, desto schwächer werden die einzelnen Bindungen und desto größer wird der ionische Charakter der Bindungen. Die Pyroxenstruktur weist Kationenpositionen mit 3 verschiedenen Koordinationszahlen auf.
Die nebenstehenden Strukturabbildungen zeigen der Klarheit wegen nur die Flächen dieser Koordinationspolyeder. Die Sauerstoffe und Kationen selbst sind nicht dargestellt. Die Sauerstoffanionen befinden sich auf den Ecken der Polyeder, die Kationen im Zentrum der Polyeder. Silikat-Anionenkomplex
Das strukturelle Charakteristikum aller Pyroxene ist die Einfachkette aus SiO4-Tetraedern mit der Summenformel [Si2O6]4-. Hierin sind die SiO4-Tetraeder sind über zwei Sauerstoffe zu idealerweise unendlichen Ketten verbunden. Nach der Silikatklassifikation von F. Liebau gehören die Pyroxene zur Gruppe der unverzweigten zweier Einfachketten- Silikate. Innerhalb einer Kette wiederholt sich die Orientierung der Silikattetraeder mit jedem zweiten Tetraeder (zweier Kette). Die Ketten sind untereinander nicht direkt miteinander verbunden (Einfachkette) und von der Kette zweigen keine weiteren Tetraeder ab (unverzweigt). Die SiO4-Tetraeder sind in den Ketten so angeordnet, dass alle Tetraeder einer Kette mit einer Tetraederspitze in die gleiche Richtung weisen. Entsprechend weisen alle Tetraeder mit einer Fläche in die entgegensetzte Richtung. Die nebenstehende Abbildung zeigt einen Ausschnitt einer SiO4-Zweier-Einfachkette mit Blick auf die Tetraederspitzen.
OktaederketteAuf der M1-Position werden die kleineren Kationen (vorwiegend Mg2+, Fe2+, Mn2+, Al3+) von sechs Sauerstoffen oktaedrisch koordiniert. Die Oktaeder sind über gemeinsame Kanten zu zickzackförmigen Ketten verknüpft. Die M2-Koordinationspolyeder sind über drei gemeinsame Kannten mit drei M1-Oktaedern einer Kette verbunden. Im Falle von 8-fach koordinierten größeren Kationen auf M2, wie z.B. Ca2+ im Diopsid oder Hedenbergid, sind die Polyeder über eine gemeinsame Kannte mit den M2-Polyedern einer benachbarten Oktaederkette verbunden. Bei kleineren sechsfach koordinierten Kationen auf M2, wie z.B. Mg2+ im Enstatit, besteht eine solche Verknüpfung nicht.
I-BeamsJe zwei Tetraederketten sind über ihre freien Spitzen mit der Ober- bzw. Unterseite eines Oktaederbandes verbunden. Diese sandwichartige Baueinheit wird wegen ihres an den Großbuchstaben I erinnernden Querschnitts auch als I-Beam bezeichnet. Diese I-Beams sind untereinander über die SiO4-Tetraeder und M2-Oktaeder verbunden.
Clino- und OrthopyroxeneDie Pyroxene werden nach ihrer Symmetrie in zwei Gruppen eingeteilt:
Die Pyroxenstrukturen der verschiedenen Raumgruppen unterscheiden sich in der Stapelung der Oktaederlagen in Richtung der kristallographischen a-Achse (siehe Abbildung). Bei den Clinopyroxenen weisen alle Oktaeder die gleiche Orientierung auf. In a-Richtung aufeinanderfolgende Tetraeder- und Oktaederlagen sind in c-Richtung jeweils etwas zueinander versetzt. Aus diesem Versatz resultiert bei den Pyroxenen der schiefe Winkel der monoklinen Symmetrie. Bei den Orthopyroxenen wechselt sich die Orientierung der Oktaeder periodisch in a-Richtung ab. Der Versatz der in a-Richtungen aufeinanderfolgenden Schichten wird hierbei ausgeglichen und es ergibt sich eine orthorhombische Elementarzelle. Die Diagonale von einer Oktaederecke durch das Oktaederzentrum zur gegenüberliegenden Ecke weist abwechselnd in Richtung der a- und c-Achse (Lagen M+) und entgegen der Richtung der a- und c-Achsen (Lagen M-). Die Oktaederlagen gegensätzlicher Orientierung können durch Spiegelung an einer Spiegelebne (parallel zur b- und c-Achse) aufeinander abgebildet werden. Diese Verhältnisse gleichen auf Elementarzellebene denen der gängigen makroskopischen Zwillingsbildung bei Pyroxenen. Daher beschreibt man Orthopyroxenen auch als polysynthetische Verzwillingung auf Elementarzellebene. Die Orthopyroxene der verschiedenen Raumgruppen Pbca und Pbcn unterscheiden sich in der Periodizität der Umkehrung der Oktaederorientierung. Pbca-Pyroxene (z.B. Ferrosollit) weisen eine Periodizität von zwei auf, d.h. nach jeder zweiten Oktaederschicht ändert sich die Orientierung der Oktaeder (Abfolge der Oktaederlagen M- M- M+ M+ M- M- …). Pbcn-Pyroxene zeichnen sich durch eine Umkehrung der Oktaederorientierung nach jeder Lage aus (Abfolge der Oktaederlagen M- M+ M- M+ M- …). VerwendungEinige Pyroxene eignen sich als Schmuckstein, so der grüne Enstatit, der ebenfalls grüne Diopsid und der rotbraune Hypersthen. Der meist massiv auftretende Jadeit wurde wegen seiner sehr kompakten Struktur zur Herstellung von Axtklingen genutzt; daneben können aus Jadeit sehr fein geschnitzte Schmuckobjekte hergestellt werden. Siehe auchLiteratur
|
|
Dieser Artikel basiert auf dem Artikel Pyroxengruppe aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |