Meine Merkliste
my.chemie.de  
Login  

Kritischer Punkt (Thermodynamik)



In der Thermodynamik ist der kritische Punkt ein thermodynamischer Zustand eines Stoffes, der sich durch Angleichen der Dichten von flüssiger- und Gasphase kennzeichnet. Ein Unterschied zwischen beiden Aggregatzuständen hört an diesem Punkt auf zu existieren. Im Phasendiagramm stellt der Punkt das obere Ende der Dampfdruckkurve dar.

Inhaltsverzeichnis

Charakterisierung

Der kritische Punkt ist durch drei Zustandsgrößen ausgezeichnet,

Da man oberhalb des kritischen Punktes Flüssigkeit und Gas nicht mehr unterscheiden kann, spricht man stattdessen von einem überkritischen Fluid bzw. einem überkritischen Zustand (selten auch superkritisch nach dem englischen supercritical).

Bei Annäherung an den kritischen Punkt vermindert sich die Verdampfungswärme und verschwindet beim Erreichen ganz. Knapp unterhalb des kritischen Punktes kann man das Phänomen der kritischen Opaleszenz beobachten: Aufgrund der extrem niedrigen Verdampfungswärme wechseln Teile der Substanz ständig zwischen flüssigem und gasförmigen Zustand hin und her, was sich durch eine starke Schlierenbildung äußert.

Mikroskopisch lässt sich das Verhalten jenseits des kritischen Punkts ausgehend von der gasförmigen Phase anschaulich beschreiben: Wird ein Gas einem immer höheren Druck ausgesetzt, so verringern sich die Abstände zwischen den Gasmolekülen. Bei Drücken jenseits des kritischen Drucks ist der Abstand dann gleich dem Abstand der Moleküle in der flüssigen Phase und kein Unterschied zu dieser mehr feststellbar.

Die kritische Temperatur ist die Temperatur, unterhalb der ein Gas durch Druck verflüssigt werden kann; oberhalb der kritischen Temperatur ist dies nicht mehr möglich.

Siehe auch: Phasenübergang, Kritischer Exponent, Tripelpunkt

Experimentelle Beobachtung

Der Übergang in einen überkritischen Zustand lässt sich gut an Kohlendioxid (CO2) beobachten, das in einem dickwandigen Rohr aus Quarzglas eingeschlossen ist. Die kritische Temperatur von CO2 beträgt 31,0 °C, der kritische Druck 73,8 bar.

Bei einer Temperatur unter 31 °C ist das Rohr zum Teil mit flüssigem CO2, zum anderen Teil mit gasförmigem CO2 gefüllt. Beide Phasen sind farblos, klar durchsichtig und durch die deutlich sichtbare Flüssigkeitsoberfläche (Phasengrenzfläche) getrennt. Wird das Rohr in ein Wasserbad von etwa 35 °C getaucht, so lässt sich beim Erwärmen zunächst eine Volumenzunahme der Flüssigkeit durch thermische Ausdehnung beobachten, während das Volumen des Dampfes infolge Kompression abnimmt. Hat das CO2 die kritische Temperatur von 31°C erreicht, so bildet sich kurzzeitig ein dichter Nebel (kritische Opaleszenz), der sich nach wenigen Sekunden wieder auflöst. Das Rohr ist danach mit einer einzigen homogenen, klar durchsichtigen Phase gefüllt: überkritisches CO2. Beim Abkühlen tritt wieder kurzzeitig Nebel auf, bevor sich das CO2 in eine flüssige und eine gasförmige Phase teilt.

Abschätzung und Berechnung

Die kritischen Zustandsgrößen können neben einer vergleichsweise aufwändigen empirischen Messung auch aus der Van-der-Waals-Gleichung abgeschätzt werden, wobei man sie hier auch zur Definition der Reduzierten Größen nutzt.

Neben diesen Zustandsgleichungen werden häufig auch Gruppenbeitragsmethoden verwendet, mit denen die kritischen Größen aus der Molekülstruktur bestimmt werden.

Entdeckung

Durch die zunehmende Verwendung von Dampfmaschinen in der Industrie im 18. Jahrhundert wurde zur gleichen Zeit auch die Untersuchung des Siedeverhaltens verschiedener Stoffe für die Wissenschaft von Interesse. Es stellte sich heraus, dass die Siedepunktstemperatur mit steigendem Druck auch ansteigt. So nahm man an, dass die Koexistenz von Flüssigkeit und Gas bis zu beliebig hohen Drücken möglich ist.

Diese Annahme wurde um 1860 von dem irischen Physiker und Chemiker Thomas Andrews widerlegt. Anhand von Untersuchungen mit CO2 konnte er zeigen, dass es einen Punkt gibt, ab dem der Unterschied zwischen Gas und Flüssigkeit nicht mehr existent ist und der sich durch eine bestimmte Temperatur, einen bestimmten Druck und eine bestimmte Dichte auszeichnet. Diesen Punkt nannte er den "Kritischen Punkt". Kurz darauf gab der niederländische Physiker Johannes Diderik van der Waals eine plausible Erklärung (siehe oben) für das Verhalten von Stoffen im überkritischen Bereich.

Anwendung

Überkritische Fluide kombinieren das hohe Lösevermögen von Flüssigkeiten mit der niedrigen Viskosität ähnlich den Gasen. Weiterhin verschwinden sie bei Druckminderung vollständig (verdampfen). Somit eignen sie sich als ideale Lösungsmittel, welche als Nachteile lediglich den hohen Druck während des Prozesses aufweisen. Überkritische Fluide werden auch zum Erzeugen von feinsten Partikeln eingesetzt.

In überkritischem Wasser kann SiO2 gelöst werden. Beim Auskristallisieren am Impfkristall werden Quarzeinkristalle gebildet. Diese werden dann in kleine Stücke gesägt und in Quarzuhren eingesetzt. Überkritisches Wasser löst Fette aus Fleisch heraus. Da sich viele verschiedene Substanzen im Fett ablagern, werden mit dieser Methode Medikamente und andere Substanzen aus dem Fleisch extrahiert und nachgewiesen. Bei Textilfärbeanwendungen kann die gute Löslichkeit des Farbstoffes im überkritischen Zustand ausgenutzt werden, um den Farbstoff aufzunehmen und in die Faser zu übertragen. Nach Abschluss des Vorgangs wird die überkritische Flüssigkeit entspannt und der restliche Farbstoff fällt fest aus.

Eine Anwendung von überkritischem CO2 ist die Entfernung von Koffein aus Tee und Kaffee.

Tabelle von kritischen Zustandsgrößen

Kritische Zustandsgrößen einiger Stoffe
Stoff kritische Temperatur
in K
kritischer Druck
in MPa
kritische Dichte
in kg/m3
Wasserstoff 33,3 1,297 310
Helium 5,3 0,229 690
Stickstoff 126,1 3,394 311
Sauerstoff 155,4 5,035 410
Fluor 144 5,96 630
Neon 44 2,72 484
Chlor 417 7,69 573
Argon 151 4,85 531
Krypton 209,4 5,88 908
Xenon 289,7 6,31 1105
Kohlenstoffdioxid 304,2 7,375 468
Kohlenmonoxid 132 3,64 301
Luft 133 3,95
Ammoniak 405,6 11,595 235
Wasser 647,1 22,12 317
Methan 190,2 4,619 163
Ethan 305 4,87 207
Propan 370 4,24 220
Butan 425 3,78 228
Ethin (Azetylen) 308 6,4 231
Ethen (Äthylen) 282 5,04 215
Ethanol 489 6,59 276
Benzol 565 5,07 302
Diethylether 467 3,75 263
Die hier dargestellten Messergebnisse verschiedener Gruppen unterliegen teilweise recht großen Schwankungen.
dient dem Zeilenumbruch, bitte nicht entfernen

siehe auch

 
Dieser Artikel basiert auf dem Artikel Kritischer_Punkt_(Thermodynamik) aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.