Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Sprengstoff
Ein Sprengstoff ist ein chemischer Stoff oder eine Mischung chemischer Stoffe, die unter bestimmten Bedingungen sehr schnell reagieren und dabei eine relativ große Energiemenge in Form einer Druckwelle (oft auch mit Hitzeentwicklung) freisetzen (Detonation). Die Geschwindigkeit, mit der sich die Reaktion im Sprengstoff ausbreitet liegt dabei über der Schallgeschwindigkeit innerhalb des Sprengstoffes (bezogen auf den Stoff selbst). Ein Gegenstand, der detonieren kann, wird sprengkräftig genannt. Das bezieht sich insbesondere auf Zündmittel. Die Sprengstoffe gehören zusammen mit den Initialsprengstoffen, Treib- und Schießstoffen (Schwarzpulver und Schießpulver oder Treibladungspulver), Zündmitteln und pyrotechnischen Erzeugnissen zu den explosionsgefährlichen Stoffen (Explosivstoffen). Weiteres empfehlenswertes Fachwissen
EinführungModerne Sprengstoffe basieren meist auf energetischen Verbindungen, die die chemischen Elemente Kohlenstoff (C), Wasserstoff (H), Stickstoff (N) und Sauerstoff (O) enthalten. Bei der Explosion verbindet sich meistens der ursprünglich am Stickstoff schwach gebundene Sauerstoff mit dem Kohlenstoff zu CO und CO2 sowie mit dem Wasserstoff zu Wasserdampf, während der Stickstoff das sehr stabile Stickstoffmolekül N2 bildet. Bei dieser Umsetzung wird normalerweise innerhalb weniger Mikrosekunden oder Millisekunden eine große Wärmemenge freigesetzt, außerdem sind die bei der Umsetzung des Sprengstoffs entstehenden Reaktionsprodukte auch wegen der entstehenden Hitze von mehreren tausend Grad Celsius gasförmig. Die plötzliche Entstehung sehr heißer Gase, mit großem Raumbedarf, aus einem Feststoff oder Flüssigkeit hat dann die für Sprengstoffe typische Druckwelle zur Folge. Die Sprengwirkung wird durch die hohe Temperatur der Gase drastisch verstärkt, denn je mehr Hitze der Sprengstoff bei der Detonation freisetzt, umso stärker der Gasdruck. Eine möglichst hohe Temperatur trägt somit zur größeren Sprengwirkung bei. Der Druck ist aber auch von anderen Faktoren abhängig. Einigen Sprengstoffen werden auch Sauerstoffträger zugesetzt, einerseits um die Sauerstoffbilanz zu verbessern, andererseits um Hochleistungssprengstoffe zu strecken und auf diese Weise einen hohen Bedarf zu decken. So wurden in Deutschland gegen Ende des Zweiten Weltkriegs in militärisch verwendeten Sprengmitteln die Anteile an Hochleistungssprengstoffen immer weiter gesenkt und durch alle verfügbaren Salpeter sowie sauerstoffarmen Ersatzsprengstoffe ersetzt. Kurz vor Kriegsende wurden dann sogar alkalichloridhaltige Wettersprengstoffe zur Füllung von Munition verwendet. Sowohl die zivilen als auch militärischen Sprengstoffe enthalten mitunter noch Metalle wie Aluminium oder Zink. Während feingepulvertes Aluminium durch höhere Temperatur die Gasschlagwirkung steigert, dienen Aluminium- oder Zinkgrieß in Flak-Munition zur Erhöhung der Brandwirkung im Ziel. Zur Initiierung von Sprengstoffen werden Sprengzünder verwendet. Es gibt elektrische, nicht-elektrische und elektronische Zündsysteme. Weltweit führender Hersteller von Zündsystemen für den zivilen Bereich ist der Orica-Konzern mit Sitz in Melbourne, Australien. Daneben werden gelegentlich noch Sprengkapseln eingesetzt, die mittels Sicherheitsanzündschnur gezündet werden. Wenn die Hauptladung aus einem sehr unempfindlichen Sprengstoff besteht, so ist zwischen Sprengzünder und Hauptladung noch eine zusätzliche Verstärkungsladung (Booster, Schlagverstärker) erforderlich. GeschichteDie ersten synthetischen Sprengstoffe waren 1847 Glycerintrinitrat und 1846 Zellulosenitrat, bekannter unter den nicht korrekten Bezeichnungen Nitroglycerin und Nitrozellulose bzw. Schießbaumwolle. Da Glycerintrinitrat sehr erschütterungsempfindlich ist und ungenügend neutralisiertes Zellulosenitrat zur Selbstentzündung neigt, wofür die Ursache zunächst nicht erkannt wurde, war die Handhabung zunächst sehr gefährlich. 1862 erfand Alfred Nobel die Initialzündung und 1867 gelang es ihm, durch Aufsaugen von Glycerintrinitrat in Kieselgur erschütterungsunempfindliches Dynamit herzustellen. 1875 fand Nobel durch Gelatinieren des flüssigen Glycerintrinitrat mit 6 bis 8% festem Zellulosenitrat die Sprenggelatine, den damals stärksten gewerblichen Sprengstoff. Da auch die Sprenggelatine noch ziemlich schlagempfindlich und teuer war, wurden durch Zumischen von Holzmehl und Nitraten die sogenannten "gelatinösen Sprengstoffe" entwickelt. Sie sind handhabungssicher und sprengkapselempfindlich. Mittlerweile werden sie, gerade im Bereich der Gewinnungssprengungen, von Ammoniumnitrat-Sprengstoffen vom Typ ANC/ANFO verdrängt, die zu Sprengschlämmen und Emulsionssprengstoffen weiterentwickelt wurden. Zu den ältesten militärischen Brisanzsprengstoffen zählten die Pikrinsäure und das m-Trinitrokresol, deren Ausgangsstoffe aus Steinkohleteer gewonnen wurden. Diese hatten jedoch den großen Nachteil, dass sie an der Innenwandung der Granaten stoßempfindliche Schwermetallpikrate bildeten, die zu Rohrkrepierern führten. Aus diesem Grund wurden die Granaten vor dem Befüllen innen lackiert. Als die Erdöldestillation genügend Toluol bereitstellen konnte, verdrängte TNT seine Vorgänger als häufig genutzter, sehr handhabungssicherer, brisanter Militärsprengstoff. Moderne Sprengstoffe mit höherer Brisanz basieren oft auf Hexogen, Nitropenta oder Ethylendinitramin. Octogen gilt als einer der brisantesten Sprengstoffe, ist aber in der Herstellung aufwendig und sehr teuer. Es wird fast ausschließlich für Spezialladungen verwendet, zum Beispiel Hohlladungen, wenn sehr hohe Brisanz gefragt ist. Parameter zur Charakterisierung von SprengstoffenSauerstoffbilanzDie Sauerstoffbilanz gibt an, ob zuviel oder zuwenig Sauerstoff zur vollständigen Oxidation des Sprengstoffes zu Verfügung steht. Je ausgeglichener die Sauerstoffbilanz (je näher bei Null), umso höher die Temperatur und umso stärker die Sprengwirkung. Bei militärischen Anwendungen von Sprengstoffen ist die Sauerstoffbilanz nebensächlich, bei Sprengstoffen für gewerbliche Zwecke sollte sie grundsätzlich positiv sein, um die Bildung brennbarer oder giftiger Reaktionsprodukte zu vermeiden. Die Sauerstoffbilanz von Sprengstoffen, die in reiner Form eine negative Sauerstoffbilanz aufweisen, kann durch Zuschlag von Sauerstoffträgern (z.B. Ammoniumnitrat) beeinflusst werden. Spezifisches Schwadenvolumen (Normalgasvolumen)Das Spezifische Schwadenvolumen ist das Gasvolumen unter Normalbedingungen, welches bei der vollständigen Umsetzung von 1 kg Explosivstoff entsteht. Aus der Molzahl N der gasförmigen Detonationsprodukte (Schwaden) pro Gramm Sprengstoff ergibt sich das spezifische Schwadenvolumen zu: Spezifische EnergieDie Spezifische Energie gibt den Druck (in Megapascal) an, den ein Kilogramm eines Explosivstoffes in einem abgeschlossenen Volumen von einem Liter bei der Explosion erzeugen würde. Diese Kenngröße ist abhängig vom spezifischen Schwadenvolumen und der Explosionstemperatur. LadedichteVerhältnis des Gewichts des Explosivstoffes zum Volumen des Explosionsraumes. Von der Ladedichte ist die Detonationsgeschwindigkeit abhängig. SchlagempfindlichkeitDie Empfindlichkeit von Sprengstoffen gegen mechanische Einwirkung (Schlag, Stoß) kann durch Zusatz von phlegmatisierenden Stoffen wie Paraffin herabgesetzt werden. Die Phlegmatisierung explosionsfähiger Gemische wird als Inertisierung bezeichnet. Desgleichen kann durch Zugabe sogenannter Sensibilisierer die Empfindlichkeit erhöht werden. Daten einiger SprengstoffeKenndaten einiger ausgewählter Sprengstoffe, wie sie meist empirisch aus standardisierten Experimenten wie der Bleiblockausbauchung ermittelt werden:
NutzungZivile Sprengstoffe werden zum größten Teil zur Gewinnung von Gestein in Tagebauen (Steinbruch: Basalt, Granit, Diabas, Kalk etc.), zur Werksteingewinnung und im Bergbau (Steinkohle, Kali & Salz, Gips, Erzabbau etc.) eingesetzt. Daneben finden sie im Verkehrswegebau, im Tunnelbau, bei Abbruchsprengungen, in der Sprengseismik und in der Pyrotechnik (Feuerwerk) Verwendung. Die Produktion von gewerblichen Sprengstoffen in Deutschland betrug im Jahre 2004 rund 65.000 Tonnen. ANC-Sprengstoffe machten davon ca. 36.000 Tonnen aus, gelatinöse Sprengstoffe auf NG-Basis ca. 10.000 Tonnen, gepumpte und patronierte Emulsionssprengstoffe ca. 16.000 Tonnen. Die restliche Menge verteilt sich auf Wettersprengstoffe für den Steinkohlenbergbau und auf Schwarzpulver für die Werksteingewinnung. Führende Hersteller von industriellen Sprengstoffen in Deutschland sind Orica, Troisdorf, Westspreng, Finnentrop, ACF, Gnaschwitz und WASAG AG, Sythen. Militärische Sprengstoffe werden als Füllmittel für Granaten, Bomben, Minen, Gefechtsköpfe von Raketen und Torpedos, sowie als Bestandteile von Treibsätzen verwendet. Weiterhin werden sie in verschiedenen pyrotechnischen Ladungen mitverwendet. Ein spezieller Punkt ist die Verwendung in Atomwaffen zur Einleitung einer Kettenreaktion. Für terroristische Zwecke werden sowohl militärische wie zivile Sprengstoffe als auch aus leicht zugänglichen Chemikalien herstellbare Stoffe und Gemische (sog. Selbstlaborate) verwendet. Beispiele sind das Gemisch aus Puderzucker und einem chlorathaltigen Unkrautvernichter oder Gemische auf Ammonsalpeterbasis. Das Mischen solcher Sprengstoffe ist sehr gefährlich, da sie dabei unvorhersehbar detonieren können. RechtlichesDer Umgang, dazu gehören das Herstellen, Bearbeiten, Verarbeiten, Verwenden, Verbringen, der Transport und das Überlassen innerhalb der Betriebsstätte, das Wiedergewinnen und Vernichten, der Verkehr (Handel) und die Einfuhr werden aufgrund der möglichen Gefährdung im Sprengstoffrecht geregelt.
SprengstoffartenTechnisch verwendete Sprengstoffe sind in der Regel Stoffgemische aus energetischen chemischen Verbindungen, Bindemitteln, Plastikatoren und anderen Zusatzstoffen. Sie werden in folgende Gruppen eingeteilt:
Nach DIN 20163 werden Sprengstoffe gemäß ihrer Verwendung unterteilt in:
Beispiele:
Grundsubstanzen für Sprengstoffe von praktischer Bedeutung
Grundsubstanzen für Sprengstoffe von geringerer Bedeutung
Grundsubstanzen für Ersatzsprengstoffe
Sauerstoffträger für Mischsprengstoffe
Grundsubstanzen im experimentellen Stadium
Literatur
Rechtsvorschriften und Normen:
Einzelnachweise
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dieser Artikel basiert auf dem Artikel Sprengstoff aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |