Meine Merkliste
my.chemie.de  
Login  

Lanthanoide



Lanthanoide [lantanoˈiːdə] („Lanthanähnliche“; griech.: Endung -oeides „ähnlich“) ist eine Gruppenbezeichnung ähnlicher Elemente. Zugerechnet werden ihr das Lanthan und die 14 im Periodensystem auf das Lanthan folgenden Elemente Cer, Praseodym, Neodym, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und Lutetium. Im Sinne des Begriffs gehört Lanthan nicht zu den Lanthanähnlichen. Hier folgt die Nomenklatur der IUPAC aber dem praktischen Gebrauch. Die Verwendung der alten Bezeichnung Lanthanide ist weiterhin erlaubt [1]. Alle Lanthanoide sind Metalle und werden auch als Elemente der Lanthanreihe bezeichnet.

57
La
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
71
Lu

 

Die Lanthanoide sind silbrig-glänzende, relativ weiche und reaktionsfreudige Metalle. An der Luft oxidieren sie schnell und werden matt. Im Wasser zersetzen sie sich mehr oder weniger schnell unter Freisetzung von Wasserstoffgas.

Sie werden auch als Metalle der seltenen Erden bezeichnet. Dieser Name ist aber insofern verwirrend, weil die Elemente dieser Gruppe mit Ausnahme des instabilen Promethiums keineswegs so selten sind, wie es suggeriert wird. So ist beispielsweise Cer in der Natur häufiger als die Elemente Arsen oder Blei. Am Aufbau der Erdkruste sind sie zu 0,02 Massenprozent beteiligt. Es handelt sich um insgesamt 14 Elemente der 6. Periode, die als Untergruppe der 3. Nebengruppe aufgefasst werden können.

Aufgrund der ähnlichen Struktur der Valenzschale verhalten sich die Lanthanoide chemisch wie die Elemente der 3. Gruppe der Periodensystems Scandium und Yttrium und bilden mit diesen zusammen die Gruppe der Seltenen Erden.

Die Lanthanoide gehören wie die Actinoide zu den inneren Übergangselementen oder f-Block-Elementen, da in diesen Reihen die f-Orbitale nicht vollständig mit Elektronen gefüllt sind.

Beginnend bei Cer wird das 4f-Orbital nach und nach aufgefüllt. Es ist bei Lutetium schließlich mit 14 Elektronen vollständig besetzt. Da die 4f-Orbitale tief im Innern der Atome liegen, nehmen sie im Gegensatz zu den d-Orbitalen der übrigen Nebengruppenelemente wenig Einfluss auf das chemische Verhalten. Die Lanthanoiden-Elemente sind sich somit in ihren chemischen Eigenschaften relativ ähnlich. Sie gleichen sich so sehr, dass man sie bei der Entdeckung der Yttererde 1794 sogar für das Oxid ein und des selben Elements hielt. Das gleiche gilt für die zahlreichen Bestandteile der Ceriterde. Gemeinsam ist ihnen die Oxidationszahl +3. Daneben treten bei einigen Elementen noch die Oxidationszahlen +2 und +4 auf. Alle weisen die für Metalle typische dichteste Kugelpackung auf. Die Härte nimmt mit steigender Ordnungszahl zu.

Lanthanoiden-Kontraktion

Aufgrund der Lanthanoiden-Kontraktion nimmt der Atomradius innerhalb der Reihe von Cer (183 pm) bis Lutetium (172 pm) nahezu stetig ab (Ausnahmen sind Europium und Ytterbium). Dies liegt daran, dass die Elemente, die - von der Ordnungszahl ausgehend - vor den Lanthanoiden liegen, bereits die 5s und 5p-Schale mit Elektronen aufgefüllt haben, jedoch die 4f-Schale nicht. Die Lanthanoide füllen nun die 4f-Schale mit Elektronen auf. Bei einer vereinfachten Vorstellung des Atom als aus räumlich abgetrennten Elektronenschalen bestehend, füllt sich nun eine, räumlich gesehen, näher zum Kern befindliche Elektronenschale mit Ladungsträgern. Nebenbei füllt sich der Kern selbstverständlich mit der gleichen Anzahl Protonen wie Elektronen auf die 4f-Schale hinzukommen. Durch die dadurch bedingte stärkere Anziehung zwischen Elektronen und Protonen schrumpft der Atomradius, obwohl die Ordnungszahl steigt.

Der gleiche Effekt führt auch zu einer Unregelmäßigkeit in den Atomradien der 3. und 4. Hauptgruppe. Hier ist der Atomradius von Aluminium ungefähr gleich dem Radius von Gallium und der Radius von Silicium ist etwas kleiner als der von Germanium (bezogen auf Kovalenzradien). Normalerweise nimmt innerhalb einer Gruppe der Radius mit steigender Periode zu.

Vorkommen

Aufgrund ihrer chemischen Ähnlichkeit kommen die Lanthanoide in der Natur meist vergesellschaftet vor. Viele von ihnen können aus Monazit (auch als sekundäre Ablagerungen - Monazitsande) gewonnen werden. Die häufigsten und ökonomisch wichtigsten lanthanoidführenden Minerale sind (verändert nach [2]):

  • Monazit CePO4
  • Xenotim YPO4
  • Bastnäsit LnCO3F
  • Parisit CaLn2(CO3)3F2
  • Allanit CaLn(Al,Fe2+)3Si3O11OH
  • Synchysit CaLn(CO3)2F
  • Ancylit SrLn(CO3)2OH·2H2O
  • Cerianit CeO2

Ln bezeichnet in den Formeln alle Elemente von Lanthan bis Lutetium sowie das sehr ähnliche Yttrium (Y). In fast allen Mineralen findet man eine Häufung entweder der leichten (Ce) oder der schweren Lanthanoide (Y verhält sich mineralchemisch wie ein schweres Lanthanoid). So enthält beispielsweise Monazit überwiegend Ce und Ln, während der Gehalt der nachfolgenden Lanthanoide mit der Ordnungszahl abnimmt (daher wird die Formel von Monazit auch immer als CePO4 angegeben). In Xenotim findet man genau den umgekehrten Fall (daher auch YPO4). Diese meist sehr effektive Fraktionierung hat ihre Ursache in der Lanthanoiden-Kontraktion (s.o.) und den von Mineral zu Mineral unterschiedlich großen zur Verfügung stehenden Kristallgitterplätzen. Auch andere Mineralgruppen können bisweilen hohe Anteile an Lanthanoiden in ihre Struktur einbauen (z.B. Zirkon, Granat).

Quellen

  1. Wolfgang Liebscher, Ekkehard Fluck: Die systematische Nomenklatur der anorganischen Chemie, Berlin 1999, ISBN 3-540-63097-X und Nomenclature of Inorganic Chemistry, IUPAC Recommendations Draft March 2004
  2. Mariano A.M. (1989): Economic geology of rare earth minerals. In Lipin B.R. & McKay G.A. (Hrsg.): Reviews in Mineralogy, Vol. 21 - Geochemistry and mineralogy of rare earth elements; Herausgegeben von der "Mineralogical Society of America"; ISBN 0-939950-25-1; pp. 309-337.
 
Dieser Artikel basiert auf dem Artikel Lanthanoide aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.