Meine Merkliste
my.chemie.de  
Login  

Matrizenmechanik



Die Matrizenmechanik ist eine durch die deutschen Physiker Werner Heisenberg, Max Born und Pascual Jordan entwickelte Formulierung der Quantenmechanik. Sie bildet das Gegenstück zu der durch Erwin Schrödinger geprägten Wellenmechanik.

1925 erarbeitete Heisenberg eine Abhandlung Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, um Ungereimtheiten der Quantentheorie auf dem Wege zu einer nichtklassischen Atomtheorie zu klären, und schuf damit eine Grundlage einer streng gültigen Quantenmechanik. Ausgangsthese war, dass in der Mikrophysik nicht nach Bahnen oder Umlaufzeiten der Elektronen im Atom geforscht werden müsse, sondern nach messbaren Differenzen der Strahlungsfrequenzen und Spektrallinienintensitäten, um allein darauf „eine der klassischen Mechanik analoge quantentheoretische Mechanik auszubilden, in welcher nur Beziehungen zwischen beobachtbaren Größen vorkommen (Q4-66)“.

Ausgearbeitet wurde die Matrizenmechanik dann gemeinsam von Max Born, Werner Heisenberg und Pascual Jordan in einer Veröffentlichung für die Zeitschrift für Physik 1926. In dieser Betrachtungweise der Quantenmechanik ändert sich der Zustandsvektor eines Systems nicht mit der Zeit. Die Dynamik des Systems wird stattdessen nur durch die Zeitabhängigkeit der Operatoren („Matrizen“) beschrieben (siehe Heisenberg-Bild).

In gewisser Weise bietet die Matrizenmechanik eine natürlichere und fundamentalere Beschreibung eines quantenmechanischen Systems als das wellenmechanische Schrödinger-Bild, besonders für relativistische Theorien, da sie die Lorentz-Invarianz mit sich bringt. Sie weist zudem eine starke formale Ähnlichkeit zur klassischen Mechanik auf, weil die Heisenbergschen Bewegungsgleichungen den klassischen Hamiltonschen Bewegungsgleichungen ähneln.

Die physikalischen Voraussagen betreffend sind die schrödingersche und die heisenbergsche Mechanik gleichwertig. Diese Äquivalenz wurde schon früh von Pauli erkannt und durch von Neumann bewiesen (Satz von Stone-von Neumann). Jedoch ist als fundamentaler Unterschied der deterministische Charakter der Wellenmechanik und der stochastische, indeterministische Charakter der Matrizenmechanik anzusehen, wobei beide Ansätze als Spezialfälle der Theorie nach Paul Dirac gelten können.

 
Dieser Artikel basiert auf dem Artikel Matrizenmechanik aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.