Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
P-n-ÜbergangVorlage:DISPLAYTITLE:p-n-Übergang Ein p-n-Übergang (engl.: p-n-junction) bezeichnet einen Materialübergang von Halbleiterkristallen mit andersartiger Dotierung. Bereiche, in denen die Dotierung von negativ (n) zu positiv (p) wechselt, kommen in praktisch allen elektrischen Bauelementen der Halbleitertechnologie vor. Die Besonderheit des p-n-Übergangs ist die Ausbildung einer Raumladungszone (Armut an freien Ladungsträgern) sowie eines internen elektrischen Feldes (Sperrschicht), wenn keine elektrische Spannung an das Bauelement angelegt wird (thermodynamisches Gleichgewicht). Diese Sperrschicht wird für viele technische Anwendungen verwendet. Die physikalischen Grundeffekte dieser Sperrschicht sind die Diffusion sowie das Coulombsche Gesetz. Weiteres empfehlenswertes Fachwissen
p-n-Übergang im Gleichgewicht
Dotierte Halbleiter sind in ihrem Grundzustand ungeladen. Die Verbindung zweier andersartig dotierter Halbleitermaterialien hat allerdings einen Konzentrationsgradienten der enthaltenen frei beweglichen Ladungsträger zur Folge. So werden die Majoritätsladungsträger durch die Diffusionskraft in das jeweils andere Halbleitermaterial gezogen, in denen ihre Konzentration geringer ist. Das heißt: die Elektronen des n-Kristalls streben in den p-Kristall, die Löcher des p-Kristalls umgekehrt in den n-Kristall. Aufgrund dieser Diffusion fehlen nun Ladungsträger in den zuvor ungeladenen Materialien. Dies resultiert in einem elektrischen Feld. Dieses elektrische Feld übt eine Kraft auf die Ladungsträger aus, die der Diffusionskraft entgegengerichtet ist. Dadurch stellt sich irgendwann ein Gleichgewicht zwischen Diffusion und elektrischer Feldkraft ein. Wegen Rekombination bildet sich in beiden Kristalltypen eine Verarmungszone (Raumladungszone) aus. Die Ausdehnung dieser Verarmungszone, oder Sperrschicht, ist abhängig von der Dotierung der Zone und der intrinsischen Ladungsträgerdichte des Materials. Bei gleich hoher Dotierungsdichte in p- und n-Gebiet ist die Raumladungszone symmetrisch. Bei ungleichen Dotierungsdichten breitet sich die RLZ weiter in das weniger stark dotierte Gebiet aus. Betrachtet man das Bändermodell dieser Anordnung, so haben sich durch den Diffusionsprozess die Ferminiveaus der beiden Kristalle angeglichen und es zeigt sich eine Krümmung der Energiebänder (Valenzband und Leitungsband) im Bereich des p-n-Übergangs. Die zuvor elektrisch neutralen Kristalle haben durch die zurückbleibenden, festen Ladungen nunmehr eine Raumladung erhalten, die den p-Kristall negativ, den n-Kristall positiv auflädt. Die dadurch entstandene Spannung wird Diffusionsspannung ψD oder englisch Built-In-Spannung Vbi genannt. Sie ist abhängig von Dotierung und Material. Bestehen die Schichten aus Silizium, so beträgt die Diffusionsspannung für typische Dotierungen ca. 0,6 bis 0,7 V. Für die Ladungsträger stellt die Krümmung der Energiebänder einen Potentialwall von der Energie dar. Die Elektronen und Löcher müssten diesen Wall überwinden, um in den jeweils anderen Teil zu gelangen. Dafür benötigen sie Energie. p-n-Übergang bei angelegter elektrischer SpannungDie Energie zum Überwinden des Potentialwalls kann in Form elektrischer Energie zugeführt werden. Diese Energie vergrößert entweder den Potentialwall oder verkleinert ihn. Durch Anlegen einer äußeren Spannung in Sperrrichtung (+ am n-Kristall, − am p-Kristall) wird das Feld der Sperrschicht verstärkt und die Ausdehnung der Raumladungszone vergrößert. Elektronen und Löcher werden von der Sperrschicht weg gezogen. Es fließt nur ein sehr geringer Strom, erzeugt durch Minoritätsladungsträger (Sperrstrom). Bei Polung in Durchlassrichtung (+ am p-Kristall, − am n-Kristall) wird der Potenzialwall abgebaut. Neue Ladungsträger fließen von der äußeren Quelle auf die Sperrschicht zu und rekombinieren hier fortwährend. Bei ausreichender angelegter Spannung fließt ein signifikanter elektrischer Strom. AnwendungWie oben gezeigt, leitet der einfache p-n-Übergang elektrischen Strom in eine Richtung sehr gut, in die andere fast nicht. Eine solche Anordnung nennt man Diode (Halbleiterdiode). Eine wichtige Anwendung der Diode ist daher der Gleichrichter zur Umwandlung von Wechselstrom in Gleichstrom. Eine Sonderform der Diode ist die Fotodiode sowie die Solarzelle. Bei diesen wird die entgegengesetzte elektrische Polarisation der Raumladungszone verwendet, um generierte Elektron-Loch-Paare zu trennen. Fotodioden werden daher in Sperrichtung betrieben. Dadurch hebt sich die Wirkung des Widerstandes auf, und der p-n-Übergang verliert seinen Einfluss auf die Elektron-Loch-Paare. Auch die meisten übrigen Halbleiterbauelemente beinhalten in klassischer Bauweise einen oder mehrere p-n-Übergänge zur Erzielung ihrer Funktion, z. B. im Bipolartransistor, Feldeffekttransistor (FET), MOS-FET, Halbleiterdetektor usw. BerechnungDie Weite der Raumladungszone in Abhängigkeit von der Donator- ND und Akzeptordotierung NA berechnet sich bei vollständiger Ionisierung der Dotieratome nach Shockley zu:
wobei die Permittivität des Vakuums, die relative Permittivität, ΦD die sich einstellende Diffusionsspannung am p-n-Kontakt und U die Spannung über der Diode ist. |
|||
Dieser Artikel basiert auf dem Artikel P-n-Übergang aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |