Meine Merkliste
my.chemie.de  
Login  

Latch-Up-Effekt



Der Fachbegriff Latch-Up (englisch Single Event Latch-Up; abgekürzt SEL) bezeichnet in der Elektronik eine Fehlfunktion in einem Halbleiterbauelement, wie beispielsweise in einer CMOS-Stufe. Die Fehlfunktion äußert sich in einem elektrischen Kurzschluss der Versorgungsspannung des betreffenden Halbleiterbauelementes und führt ohne Schutzmassnahmen zu dessen thermischer Zerstörung.

Ausgelöst kann ein Latch-Up durch eine kurze elektrische Spannungsspitze werden, beispielsweise durch Überspannung, eine elektrostatische Entladung und selten durch Alpha- oder Neutronenstrahlung.

Inhaltsverzeichnis

Ursache des Latch-Up-Effektes

  Durch den Schichtaufbau der einzelnen Dotierungen von n- und p-Kanal-Feldeffekttransistoren in einem gemeinsamen Substrat in einer integrierten Schaltung ergeben sich ungewollte parasitäre npn- und pnp-Bipolartransistoren. Diese entsprechen in ihrer gegenseitigen Verschaltung einem Thyristor, wie in nebenstehender Grafik am Beispiel eines Inverters in CMOS-Technologie dargestellt ist. Der Latch-Up-Effekt bezeichnet das Zünden (Durchschalten) dieses parasitären Thyristors. Dabei kommt es zu einem Kurzschluss der Versorgungspannung im Halbleiterbauteil, was zu hohen Strömen und meist zur Zerstörung durch thermische Überlastung führt.

Technische Beschreibung

Die kritische geometrische Struktur besteht aus einem lateralen npn- und einem parasitären vertikalen pnp-Transistor. Die Source-Drain-Gebiete der p-Kanaltransistoren sind der Emitter und die n-Wanne die Basis des so entstandenen pnp-Transistors, während das p-leitende Substrat den Kollektor darstellt. Emitter, Basis und Kollektor des npn-Bipolartransistors bilden entsprechend die Source-Drain-Gebiete der n-Kanal-Feldeffekttransistoren, das p-Substrat und die n-Wanne.

Beide bipolaren Transistoren sind unter normalen Betriebsbedingungen gesperrt. Fließen aber aufgrund äußerer Bedingungen hohe laterale Ströme durch Wanne und Substrat, kommt es an diesen Stellen zu Spannungsabfällen. Diese Spannungen polen die Basis-Emitter-Diode einer der beiden parasitären Transistoren in Flussrichtung. Es kommt zu einem Stromfluss. Der daraus resultierende Kollektorstrom erzeugt einen Spannungsabfall im Basisparallelwiderstand des entstandenen komplementären Transistors. Wird auch bei diesem die Basis-Emitter-Spannung überschritten, leiten nun beide Transistoren. Die Folge ist eine positive Rückkopplung zwischen den beiden parasitären Bipolartransistoren sowie eine dauerhafte niederohmige Verbindung zwischen der Versorgungsspannung und der Masse. Diese niederohmige Verbindung kann dann nur durch Entfernung der Versorgungsspannung getrennt werden.

Ist die Stromverstärkung eines der beiden Transistoren hoch genug, dann bleibt die Anordnung auch nach dem Verschwinden der injizierten Ströme im aktiven Zustand (Halte- oder Latch-Up-Zustand). Dies führt zu Fehlfunktion des Bauteils, da die Ausgänge auf einem festen Pegel liegen und nicht mehr auf Änderungen des Eingangs reagieren. Der fließende Strom wird außerdem nur durch die Bahnwiderstände und die Widerstände der Basis-Kollektor-Strecken der beteiligten Transistoren bestimmt. Die zuführenden Metallbahnen sind dafür in der Regel nicht ausgelegt und es kann zu einer thermischen Zerstörung oder Verschmelzung mit darunter liegenden Strukturen kommen.

Auslösemechanismen

  • Die Versorgungsspannung überschreitet die absoluten Grenzdaten (engl. absolute maximum ratings) des Bausteins. Eine kurze Spannungsspitze wie bei einer elektrostatischen Entladung kann hier genügen.
  • Die Spannung am Eingangs- bzw. Ausgangsanschluss überschreitet die Versorgungsspannung um mehr als den Spannungsabfall einer Diode. Dies kann durch Spannungsspitzen auf einer Signalleitung passieren, z. B. durch Übersprechen.
  • Falsche bzw. unzureichende Reihenfolge in der verschiedene Versorgungsspannungen in einer Schaltung eingeschaltet werden (engl. power up sequencing). Noch unversorgte Schaltungsteile, an denen aber schon Signale von bereits versorgten Schaltungsteilen anliegen, können so in den Latch-Up-Zustand gehen.
  • Eine weitere unter normalen Umständen eher seltene Ursache ist ionisierende Strahlung, wie Alpha- oder Neutronenstrahlung. Der Latch-Up-Effekt führt bei dem Betrieb von ungeschützen CMOS-Schaltungen in der Nähe von (starken) radioaktiven Strahlungsquellen zu Ausfällen der Elektronik. Auch in diesem Fall kann eine Einzelereignis ausreichen.

Gegenmaßnahmen

Strukturelle Gegenmaßnahmen im Halbleiter

Um die oben beschriebenen auslösenden Mechanismen wirksam zu unterdrücken, können folgende Maßnahmen ergriffen werden:

  • Große Abstände der Source-Drain-Gebiete zu den Wannenrändern
  • Niederohmiges Substrat und p+-Schutzring (engl. guard ring) neben der n+-Wanne
  • Niederohmiger n+-Schutzring für den Versorgungsspannungsanschluss
  • Isolierung der einzelnen FETs durch SOI-Substrate

Dabei ergeben sich folgenden Probleme. Auf einem hochdotierten Material (geringer elektrischer Widerstand) lassen sich keine niederohmigen Wannenbereiche implantieren. Daher verwendet man epitaktisch beschichtete Wafer, die eine dünne hochohmige (niedrigdotierte) Siliziumschicht auf dem hochdotierten Material tragen. Die Epi-Schicht nimmt Wannen- und Transistorgebiete auf und das darunter liegende gut leitfähige Substrat sorgt dann für einen wirksamen Latch-Up-Schutz. Der einzige Nachteil dieses Verfahrens sind die hohen Kosten aufgrund des zusätzlichen Beschichtungsverfahren.

Weitere Maßnahmen sind eher baulicher Art und betreffen kurze Anbindungen von Leitungen mit hohen Strömen und die in der Aufzählung bereits erwähnten Guard-Ring-Strukturen. Diese Guard-Ringe sind hochdotierte p+-dotierte Strukturen im p-Substrat und n+-dotierte Strukturen in der n-Wanne. Sie sammeln injizierte Ladungsträger auf und entziehen sie dem Lateralstrom. Guard-Ringe sind nur sehr platzaufwendig zu realisieren, werden aber bei kritischen Ein- und Ausgangsschaltungen in der CMOS-Technologie verwendet.

Moderne CMOS-Schaltungen weisen zur Unterdrückung dieses Störeffektes an den Eingängen spezielle geometrische Anordnungen der Dotierungsbereiche der n- und p-FETs auf. In der Raumfahrt werden auch Schutzschaltungen (schnelle Strombegrenzer) eingesetzt. Eine andere durch Weltraumstrahlung hervorgerufenen Störung, der sogenannte SEU (Single Event Upset), führt nicht zur Zerstörung der Schaltung sondern nur zu einer vorübergenden Störung – je nach Schaltung auch bis zum Blockieren, dies kann jedoch durch Aus-/Einschalten behoben werden. Beide Effekte, SEL und SEU, werden auch als Single Event Effects bezeichnet, da sie von einem einzelnen hochenergetischen Teilchen ausgelöst werden können.

Systematische Gegenmaßnahmen

Es können auch Gegenmaßnahmen außerhalb des Halbleiterbausteins getroffen werden. Im Allgemeinen sind dies Maßnahmen, die sicherstellen, dass die absoluten Grenzdaten des Bausteines nicht verletzt werden:

  • Sorgfältiges Power-Sequencing.
  • Bei zwei Versorgungsspannungen für das Bauteil kann eine Schottky-Diode zwischen den Versorgungen dafür sorgen, dass diese sich nur um den Spannungsabfall der Diode unterscheiden.
  • Strombegrenzung der Versorgung (z. B. durch einen Reihenwiederstand). Dieses verhindert zwar nicht den Latch-Up, beugt aber der thermischen Zerstörung des Bauteils vor.

Nachteil dieser Maßnahmen ist, das die zusätzlichen Bauteile höhere Kosten verursachen. Auch der begrenzte Platz auf einer Leiterplatte kann sich limitierend auf den Einsatz dieser Maßnahmen auswirken.

 
Dieser Artikel basiert auf dem Artikel Latch-Up-Effekt aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.