Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Slater-DeterminanteDie Slater-Determinante (nach John C. Slater) erhält man als Ergebnis für den einfachsten Näherungsansatz zur Lösung der Schrödinger-Gleichung eines Moleküls mit N Elektronen. Diese Wellenfunktion ist ein anti-symmetrisiertes Produkt bestehend aus N orthonormalen Einelektronenfunktionen, welche man durch den Hartree-Fock-Ansatz erhält. Weiteres empfehlenswertes Fachwissen
MotivationFür ein System aus N unterscheidbar angenommenen Elektronen ist ein vollständiges Orthonormalsystem von Zuständen gegeben, ausdrückbar durch die Produktwellenfunktionen aller möglichen Permutationen der Einteilchenzustände. Aus quantenphysikalischer Sicht sind die Teilchen eines Vielteilchensystems gerade nicht unterscheidbar. Dies führt dazu, dass bestimmte Symmetriebedingungen an die dazugehörige Wellenfunktion zu stellen sind. Die Wellenfunktion muss im Fall von Fermionen antisymmetrisch zu beliebiger Vertauschung von zwei Teilchen sein. Um dies gewährleisten zu können wird, wie im Folgenden gezeigt, die Slater-Determinante aus Einteilchenzuständen geschrieben. HerleitungsskizzeWellenfunktion:
ErgebnisDie Slater-Determinante kann wie folgt geschrieben werden: Literatur
Kategorien: Atomphysik | Physikalische Chemie |
|
Dieser Artikel basiert auf dem Artikel Slater-Determinante aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |