Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.
my.chemie.de
Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.
- Meine Merkliste
- Meine gespeicherte Suche
- Meine gespeicherten Themen
- Meine Newsletter
Vektor (Gentechnik)In der Gentechnik und der Biotechnologie versteht man unter einem Vektor ein Transportvehikel ("Genfähre") zur Übertragung einer Fremd-Nukleinsäure (oft DNA) in eine lebende Empfängerzelle. Als Vektoren werden meist Plasmide, modifizierte Viren (z. B. Bakteriophagen oder Retroviren), Cosmide oder YACs verwendet. Vektoren ermöglichen das Klonieren eines bestimmten DNA-Abschnittes. Weiteres empfehlenswertes Fachwissen
Eignung eines VektorsVerschiedene Vektoren können gemäß den gegebenen Rahmenbedingungen eine unterschiedliche Eignung als Transportvehikel aufweisen. Der Vektor sollte sich möglichst einfach in die Empfängerzelle einschleusen lassen (hierbei spielt unter anderem die spezifische Immunabwehr eine Rolle) und er sollte sich unabhängig von deren Hauptgenom replizieren können, um eine starke Vermehrung zu gewährleisten.
VektortypenVektoren werden nach den Lebewesen, die sie in sich tragen, in verschieden Typen eingeteilt. Jeder Typ hat bestimmte Eigenschaften und sagt dadurch einiges über die Eignung des Vektors aus. PlasmidvektorenPlasmidvektoren sind Vektoren, die aus Plasmiden gewonnen werden. Häufig tragen Prokaryoten Plasmide, jedoch auch einige Eukaryoten (Hefezellen). Die am meisten verwendete Wirtszelle für Plasmidvektoren ist das Bakterium Escherichia coli. Dieses Bakterium zählt wohl zu den am stärksten verwendeten Lebewesen in der Gentechnik. Die Vorteile von Plasmidvektoren sind klar: Sie sind einfach zu verwenden, da sie klein sind und leicht aus der Zelle gewonnen werden können. Außerdem sind Plasmide für das Überleben der Zelle nicht unbedingt notwendig. Ein Eingriff hat daher selten Auswirkungen auf die Wirtszelle. Darüberhinaus replizieren Plasmide unabhängig vom Bakterienchromosom und können daher in den Zellen in vielen Kopien vorliegen. Dabei ist die Kopienzahl abhängig von der Art des Plasmids und dessen Replikationsstartpunkt (origin of replication). Um Plasmidvektoren verwenden zu können, müssen die natürlich vorkommenden Plasmide erheblich verändert werden. Aus der riesigen Anzahl kann man sich ein geeignetes Molekül aussuchen. Besonders beliebt sind Resistenzplasmide, da sie sehr leicht mit einem Antibiotikum selektiert werden können. Zudem sollten die Vektormoleküle eine Multiple Cloning Site (MCS) enthalten. Dabei handelt es sich um einen DNA-Abschnitt, der in kurzen Abständen eine Vielzahl von Erkennungssequenzen für Restriktionsendonukleasen vom Typ II enthält, die jeweils nur ein einziges Mal im Vektormolekül vorhanden sein dürfen. Idealerweise befindet sich die MCS in einem weiteren Markergen für die Doppelselektion, dessen Funktion durch die Integration der Fremd-DNA zerstört wird. Daher exprimieren nur diejenigen Zellen die Produkte des Markergens, welche die Fremd-DNA nicht enthalten und können daher von den Zellen unterschieden werden, die die Fremd-DNA im Vektormolekül intergriert enthalten. Damit die in den Vektor integrierte Fremd-DNA in der Wirtszelle vermehrt werden kann muss der Plasmidvektor auch einen Replikationsstartpunkt besitzen. Der Hauptnachteil von Plasmidvektoren besteht in ihrer geringen Kapazität: Schon bei einem DNA-Fragment von 5 kb Länge nimmt die Effektivität der Klonierung ab. Die maximal mögliche Länge liegt bei 10–15 kb. Da in vielen Fällen längere Sequenzen kloniert werden, ist man auf andere Vektoren angewiesen. Virale VektorenAls Virale Vektoren werden modifizierte Viren bezeichnet, die eukaryotische Zellen transduzieren und dabei fremde Gene in diese Zellen einschleusen können. Sie werden beispielsweise in der Gentherapie eingesetzt. BakteriophagenvektorenBakteriophagen (kurz: „Phagen“) sind Viren, welche Bakterien befallen. Sie werden nach ihrer Wirtszelle in verschiedene Gruppen eingeteilt. Die Verwendung von Bakteriophagenvektoren beruht auf dem lysogenen Zyklus der Phagen. Viren lassen sich in virulente und temperente einteilen. Virulente Viren haben einen lytischen Zyklus, das heißt sie dringen in ihre Wirtszelle ein und veranlassen diese zur Bildung neuer Viren. Temperente Viren haben einen lysogenen Zyklus, sie bauen ihr Genom in das der Wirtszelle ein. Darin liegt das Interesse der Forscher. Durch den Einbau des Virusgenoms kann auch ein zu untersuchendes DNA-Fragment in die Zelle eingeschleust werden. CosmideDurch die Überschneidung von Plasmiden mit den kohäsiven Enden der Bakteriophagen-DNA erhält man so genannte Cosmide. Man verwendet dazu den Bakteriophagen Lambda. Dessen Genom hat kurze einzelsträngige Enden, die zueinander komplementär sind und sich so zu einem Ring schließen können. Diese Enden werden als cos-Region (engl. cohesive sites: kohäsive Enden) bezeichnet. Der große Vorteil von Cosmiden im Gegensatz zu Plasmidvektoren besteht darin, dass sie selbst wesentlich kürzer sind und daher eine größere Aufnahmekapazität besitzen. Cosmide können Abschnitte bis etwa 47 kb Länge aufnehmen und übertreffen dadurch sogar Phagenvektoren. Verarbeitet werden Cosmide wie Bakteriophagenvektoren. Da sie jedoch keine Phagengene enthalten, verhalten sie sich in der Wirtszelle wie Plasmide. Dies macht sie zu sehr attraktiven Vektoren. Jedoch sind Cosmide schwer zu handhaben, wodurch die Vorteile wieder ausgeglichen werden. PhasmidePhasmide funktionieren ähnlich wie Cosmide, sind also ebenfalls Hybridvektoren aus Plasmid und Phage, jedoch bleibt dabei die Plasmidfunktion bestehen und wird exprimiert. Literatur
Siehe auch
|
|||||||||||||||||||||||||||||||
Dieser Artikel basiert auf dem Artikel Vektor_(Gentechnik) aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar. |