Meine Merkliste
my.chemie.de  
Login  

Ausdehnungskoeffizient



Der Ausdehnungskoeffizient oder Wärmeausdehnungskoeffizient ist ein Kennwert, der das Verhalten eines Stoffes bezüglich Veränderungen seiner Abmessungen bei Temperaturveränderungen beschreibt. Der hierfür verantwortliche Effekt ist die Wärmeausdehnung. Da die Wärmeausdehnung bei vielen Stoffen nicht gleichmäßig über alle Temperaturbereiche erfolgt, ist auch der Wärmeausdehnungskoeffizient selbst temperaturabhängig und wird deshalb für eine Bezugstemperatur oder einen Temperaturbereich angegeben.

Es wird zwischen dem thermischen Längenausdehnungskoeffizienten α (auch linearer Wärmeausdehnungskoeffizient oder Wärmedehnung) und dem thermischen Raumausdehnungskoeffizienten γ (auch räumlicher Ausdehnungskoeffizient oder Volumenausdehnungskoeffizient oder kubischer Ausdehnungskoeffizient) unterschieden:

Inhaltsverzeichnis

Linearer Wärmeausdehnungskoeffizient

  • Der lineare Ausdehnungskoeffizient gibt an, um welche Längendifferenz im Verhältnis zur gesamten Länge L, sich ein fester Körper bei einer Temperaturänderung von einem Kelvin verändert.

Er ist eine stoffspezifische Größe, die für einen homogen Festkörper definiert ist durch:

\alpha = \frac{1}{L} \cdot \frac{\Delta L}{ \Delta T} \,

Die Längenänderung eines Stabes bei gleichmäßiger Erwärmung oder Abkühlung um die Temperaturdifferenz ΔT kann berechnet werden, indem der lineare Ausdehnungskoeffizient α des Stabmaterials mit der Stablänge L und der Temperaturdifferenz ΔT multipliziert wird:

\Delta L = \alpha \cdot L \cdot \Delta T bzw. L = L_0 (1 + \alpha \cdot \Delta T) \,

Bei großen Temperaturdifferenzen ist genauer:

L = L_0 \cdot \exp (\alpha \cdot \Delta T) \,

Bei anisotropen Festkörpern kann auch die Messrichtung einen Einfluss haben, was es in Bezug auf die Aussagekraft der Stoffwerte zu beachten gilt.

Volumenspezifischer Ausdehnungskoeffizient

  • Der volumenspezifische Ausdehnungskoeffizient gibt an, um welchen Betrag im Verhältnis zum gesamten Volumen sich das Volumen eines Körpers bei einer Temperaturänderung von einem Kelvin vergrößert oder verkleinert.

Anders ausgedrückt: Der volumenspezifische Ausdehnungskoeffizient beschreibt die relative Änderung des Volumens V mit der Temperatur T. Er ist definiert durch:

\gamma=\frac{1}{V_0}\left(\frac{\part V}{\part T} \right)_p \,

Für isotrope (kubische) Festkörper gilt: \gamma = 3 \cdot \alpha \,.

Der volumenspezifische Ausdehnungskoeffizient ergibt sich, da die Masse \rho(T) \cdot V(T) temperaturunabhängig ist, aus der Dichte ρ(T) in Abhängigkeit von der Temperatur:

\gamma=-\frac{1}{\rho}\left(\frac{\part \rho}{\part T} \right)_p \,

Ist der Ausdehnungskoeffizient als Funktion der Temperatur bekannt, so ergibt sich die Dichte aus:

\rho(T)=\rho(T_0) \cdot \exp \left( - \int_{T_0}^{T} \gamma (T) \cdot dT \right) \,

Hierbei ist T0 eine beliebige Temperatur, z.B. T0 = 298,15 K = 25 °C, bei der die Dichte ρ(T0) bekannt ist.

Grüneisen hat gezeigt, dass der Quotient α / cp zwischen dem thermischen Ausdehnungskoeffizienten α und der spezifischen Wärmekapazität cp unabhängig von der Temperatur ist.

Im Allgemeinen ist der Wärmeausdehnungskoeffizient eine positive Größe. Wegen des Massenerhaltungssatzes geht daher bei den meisten Stoffen eine Temperaturerhöhung mit einer Verringerung der Dichte einher. Manche Stoffe wie beispielsweise Wasser zwischen 0 und 4 °C zeigen jedoch in einem bestimmten Temperaturbereich ein ungewöhnliches Verhalten, das man als Dichteanomalie bezeichnet. Außerdem gibt es Materialien wie zum Beispiel einige Arten von Glaskeramik, deren Wärmeausdehnungskoeffizient nahezu null ist.

Der Wärmeausdehnungskoeffizient wird auf empirischen Wege durch Messungen ermittelt und gilt nur für den Stoff und für den Temperaturbereich, an beziehungsweise in dem die Messung erfolgte.

Beispiele

Gase verhalten sich meistens annähernd als ideales Gas, das sich proportional zur Temperatur in [Kelvin] ausdehnt und demzufolge bei 0°C (273,15 K) einen Ausdehnungskoeffizienten von 1/273,15 K-1hat.

Längenausdehnungskoeffizient α einiger
Feststoffe
Bezeichnung α in 10-6/K bei 20 °C
Acryl 90,0
Aluminium, gewalzt 23,2
Aluminium, rein 23,0
Antimon 10,5
Aramidfaser (HM-Faser in Längsrichtung) -4,1
Bakelit (mit Holzmehl) 50,0
Bakelit (mit Asbest) 30,0
Beryllium 12,3
Beton 6 bis 14
Bismut 14,0
Blei 29,3
Bronze 17,5
Cadmium 41,0
Chrom 6,2
Diamant 1,3
Eis, 0 °C 51,0
Eisen 12,2
Germanium 6,0
Gummi (leicht vulkanisiert) 220,0
Gummi (mit Ruß) 160,0
Glas (Fensterglas) 7,6
Glas (Geräteglas) 4,5
Glas (BK7) 7.1
Glas (Borsilikatglas, Duran, Pyrex) 3,25
Glas (Quarzglas) 0,5
Glaskeramik (Zerodur) < 0,1
Gold 14,2
Granit 3,0
Graphit 2,0
Grauguss 9,0
Holz, Eiche 8,0
Invar 1,7-2,0
Iridium 6,5
Kochsalz 40,0
Kohlenstofffaser (HM 35 in Längsrichtung) -0,5
Konstantan 15,2
Kovar um 5
Kupfer 16,5
Magnesium 26,0
Mangan 23,0
Mauerwerk 5,0
Messing 18,4
Molybdän 5,2
Neusilber 18,0
Nickel 13,0
Platin 9,0
Polyamid (Nylon) 120,0
Polyethylen keine Angabe
Polystyrol 70,0
Polyester 80,0
Polyester mit 70% Glasfaser 12,0
Polymethylmethacrylat (PMMA) 85,0
Polyvinylchlorid, biegsam (PVC) 240,0
Polyvinylchlorid, steif (PVC) 50,0
Porzellan 3,0
Silber 19,5
Silizium 2,0
Stahl 13,0
Stahl, rostfrei 14,4-16,0
Titan 10,8
Wolfram 4,5
Zink 36,0
Zinn 26,7
 
Raumausdehnungskoeffizient γ einiger
Flüssigkeiten
Bezeichnung γ in 10-3/K bei 20 °C
Alkohol (Ethanol) 1,10
Aceton (Propanon) 1,43
Benzin 1,06
Benzol 1,23
Chloroform (Trichlormethan) 1,28
Essigsäure 1,07
Ether 1,62
Ethylacetat 1,38
Glyzerin (Propantriol) 0,49
Methanol 1,10
Mineralöl (Hydrauliköl) 0,70
Paraffin 0,76
Petroleum 0,96
Quecksilber 0,182
Terpentinöl 1,00
Tetrachlormethan 1,22
Toluol 1,12
Wasser (siehe hier) 0,21

Zweiphasige Werkstoffe

Für zweiphasige Werkstoffe, die aus einer Matrixphase und einer eingelagerten oder durchdringenden Phase bestehen, ergibt sich der lineare thermische Ausdehnungskoeffizient aus folgender Formel:

\alpha=\alpha_M+\frac{(\alpha_I-\alpha_M)\cdot V_I E_I \cdot (1-2 \nu_M)}{V_M E_M \cdot(1-2 \nu_I) + V_I E_I \cdot(1-2\nu_M)} \,

Hierbei bezeichnen αM bzw αI die Wärmeausdehnungskoeffizienten, VM bzw VI die Volumenanteile, EM bzw EI die Elastizitätsmoduln und νM bzw νI die Querkontraktionszahlen der Matrixphase (Index M) bzw. der eingelagerten Phase (Index I).

Literatur

  • G. Ondracek: Werkstoffkunde. Leitfaden für Studium und Praxis, ISBN 3-88508-966-1, Expert-Verlag, 2. Aufl., 1986

Siehe auch

 
Dieser Artikel basiert auf dem Artikel Ausdehnungskoeffizient aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Zuletzt angesehen
Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf ie.DE nicht.