"Klar wie ein Kristall" - Bayreuther Physiker machen komplexe molekulare Strukturen sichtbar
Lehrstuhl für Experimentalphysik IV
Bei der Aufklärung der Strukturen von transparenten Festkörpern sind Physiker der Universität Bayreuth jetzt einen bedeutenden Schritt vorangekommen. Professor Dr. Jürgen Köhler (Lehrstuhl Experimentalphysik IV) und Professor Dr. Lothar Kador (Bayreuther Institut für Makromolekülforschung) haben gemeinsam mit einem Forscherteam des Instituts für Spektroskopie an der Russischen Akademie der Wissenschaften ein neues Verfahren entwickelt, das auf der Einzelmolekülspektroskopie beruht. Es verwendet eine avancierte Lasertechnik in Kombination mit einer außerordentlich leistungsfähigen Software zur Speicherung und Weiterverarbeitung von Bilddaten. Dadurch lassen sich die Strukturen eines Festkörpers, z.B. eines polykristallinen Materials, unter dem Mikroskop sichtbar machen. Die Proben des Festkörpers werden "klar wie ein Kristall" - prinzipiell bis hinunter zu molekularen Strukturen, die weit unter der von Abbe definierten Beugungsgrenze liegen. Die Forschungsarbeiten, die diese Erkenntnisse ermöglicht haben, sind insbesondere von der Deutschen Forschungsgemeinschaft und der Russischen Stiftung für Grundlagenforschung gefördert worden.
Farbstoffmoleküle als "Sonden" für molekulare Feinstrukturen
Das neue Verfahren beruht auf der Idee, fluoreszierende Farbstoffmoleküle als "Sonden" einzusetzen, um hochkomplexe Strukturen unterhalb der Beugungsgrenze aufzuklären. Dieser Ansatz bildet seit zehn Jahren bereits die Grundlage für innovative mikroskopische Verfahren in den Biowissenschaften. Die Bayreuther Physiker haben ihn jetzt auf die Materialwissenschaften angewendet. Dabei wurden nahezu 300.000 Moleküle des Farbstoffs Terrylen in einen organischen Molekülkristall eingelagert. Ausgangspunkt für deren spektroskopische Untersuchung sind die Phänomene der Absorption und Fluoreszenz. Jedes Farbstoffmolekül kann von einem Laserstrahl in einen energetisch angeregten Zustand versetzt werden. Dabei absorbiert es Licht in einem bestimmten Frequenzbereich, dem sog. Absorptionsspektrum. Unmittelbar nach der Absorption fällt das Molekül in einen energieärmeren Zustand zurück und sendet Licht aus: Das Farbstoffmolekül fluoresziert. Beim Fluoreszieren erscheint das Molekül unter dem Mikroskop als eine punktförmige Lichtquelle. Indem der Schwerpunkt der Lichtquelle berechnet wird, lässt sich das einzelne Molekül mit einer Genauigkeit von wenigen Nanometern lokalisieren.
Hochselektive Anregung von Einzelmolekülen bei tiefen Temperaturen
Bei extrem tiefen Temperaturen - und nur dort - haben die Farbstoffmoleküle die Eigenschaft, dass ihre Absorptionsspektren extrem schmal sind und sich nicht überlappen. Unter dieser Voraussetzung lassen sich auch ihre Fluoreszenzsignale unabhängig voneinander anregen. Deshalb kühlen die Bayreuther Physiker die Probe des Kristalls, die mithilfe des eingelagerten Farbstoffes untersucht werden soll, bis auf eine Temperatur nahe dem absoluten Nullpunkt ( -273 Grad Celsius) ab. Für die spektroskopische Untersuchung verwenden sie einen sehr schmalbandigen Laser, einen sog. Ein-Moden-Laser. Dieser Laser wird nacheinander auf unterschiedliche Frequenzen eingestellt. Zu jedem Zeitpunkt regt er nur einige wenige der rund 300.000 Farbstoffmoleküle an; nämlich nur diejenigen Moleküle, deren Absorptionsspektrum der Frequenz des Laserstrahls entspricht. Folglich fluoreszieren zu jedem Zeitpunkt nur diese wenigen Moleküle; von benachbarten Molekülen gehen keine störenden Signale aus. Wenn die Konzentration des Farbstoffes richtig gewählt wird, sind die gleichzeitig fluoreszierenden Moleküle stets weiter als die Beugungsgrenze voneinander entfernt und können getrennt detektiert werden.
Von Fluoreszenzbildern zur mikroskopischen Nanodiagnostik
Mit einer speziellen Kamera werden die von den Einzelmolekülen ausgehenden Fluoreszenzsignale nacheinander aufgenommen. Sie werden gespeichert und liefern in Verbindung mit einer leistungsfähigen Software ein Gesamtbild, das sich aus einer Vielzahl kleiner Bildpunkte zusammensetzt: nämlich aus den Fluoreszenzbildern, die die räumlichen Positionen der Farbstoffmoleküle darstellen. Jetzt werden Strukturen des Festkörpers, wie z.B. feine linienförmige Risse, unter dem Mikroskop klar erkennbar. Die Beugungsgrenze ist überwunden.
Originalveröffentlichung: Andrei V. Naumov, Alexey A. Gorshelev, Yury G. Vainer, Lothar Kador, Jürgen Köhler; "Far-Field Nanodiagnostics of Solids with Visible Light by Spectrally Selective Imaging"; Angewandte Chemie International Edition 2009, Volume 48, Issue 51, pp. 9747-9750