Größere Speicher durch kleine Poren
Ein neues von der Deutschen Forschungsgemeinschaft gefördertes Projekt an der Professur für Oberflächen- und Grenzflächenphysik der TU Chemnitz untersucht Möglichkeiten, mithilfe von Nanoporen neuartige Speicherbausteine zu erzeugen
TU Chemnitz/Heiko Kießling
Den Aufbau einer herkömmlichen Festplatte kann man sich als Verknüpfung vieler kleiner Körnchen vorstellen, die genau zwei magnetische Zustände aufweisen können - je nachdem, ob ihr Süd- oder ihr Nordpol senkrecht nach oben gerichtet ist. Entsprechend dieser Orientierung nehmen die magnetisierten Teilchen die binären Werte "Null" oder "Eins" an. Um auf kleiner werdenden Flächen immer mehr Daten speichern zu können, muss man die Dichte dieser Körnchen erhöhen. In der Vergangenheit wurden dazu die Durchmesser der Teilchen stark verkleinert, was jedoch Schwankungen in deren Orientierung mit sich brachte und letztlich einen Datenverlust zur Folge haben konnte. "In einem viel versprechenden Konzept verwenden wir nun einen magnetischen Film, der auf ein Netzwerk von Nanoporen aufgedampft wird. Dieser ist zur Ebene des Netzwerks senkrecht magnetisiert", erklärt Albrecht. Diese so genannte magnetische Anisotropie, also die Richtungsabhängigkeit der magnetischen Momente, kann von den Wissenschaftlern gezielt variiert werden. "Eine besonders hohe Steifigkeit erreichen wir bei den von uns verwendeten Cobalt-Platin-Legierungen", so Albrecht.
Die kleinsten Speicherzellen des Filmmaterials tendieren dazu, sich beim Beschreibungsvorgang - also bei der Ummagnetisierung - des Datenträgers auszubreiten. "Durch das verwendete Nanonetzwerk werden die Speicherzellen daran gehindert, weiter zu wachsen. Sie dehnen sich idealerweise lediglich bis zu einem Loch in der Netzstruktur aus und bleiben dann an diesem hängen. Damit können wir sehr viele winzig kleine Speicherbausteine realisieren", beschreibt Albrecht den Prozess. Diese Kombination von magnetischen Funktionsschichten mit unterschiedlichen Netzwerken aus Nanostrukturen wird in der Fachsprache als "Percolated Media" bezeichnet und weltweit untersucht. "Dieses Konzept besitzt eine enorme technologische Bedeutung für die zukünftige Datenspeicherung. Es gibt auf diesem Forschungsgebiet noch viele Ungewissheiten und Probleme, aber das ist gerade die spannende Herausforderung", so Albrecht.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.