Praktikable Photonenquelle für die Quantenkommunikation
Wissenschaftlern bauen erstmals eine anwendungsnahe Quelle einzelner Lichtquanten
© TU Berlin/AG Optoelektronik
In der Arbeitsgruppe von Professor Dr. Stephan Reitzenstein am Institut für Festkörperphysik der TU Berlin ist es jetzt gelungen, eine Plug & Play-Quelle von Lichtquanten zu bauen.
„Das System beruht auf einem sogenannten künstlichen Atom, also einem Quantenpunkt, auf einem Halbleiterchip. Genau über diesem Quantenpunkt können wir in einer von uns entwickelten einzigartigen Technik eine Mikrolinse anbringen. Diese Linse sammelt die von dem Quantenpunkt ausgesandten Photonen effizient ein, sodass wir später eine hohe Datenübertragungsrate in der Quantenkommunikation realisieren können“, erklärt Dr. Tobias Heindel, Mitarbeiter von Prof. Reitzenstein.
Zur Nanostrukturierung des Halbleiterchips wurde eine in der AG Reitzenstein entwickelte revolutionäre Technik eingesetzt, mit der eine Mikrolinse exakt über einem ausgewählten Quantenpunkt platziert wird – mit diesem Verfahren gelangen der Gruppe in den letzten Jahren bereits zahlreiche wissenschaftliche Erfolge.
Um eine Quanten- oder Photonenquelle jedoch auch in der Quantenkommunikation außerhalb der Labors in der Praxis nutzen zu können, müssen die Photonen zusätzlich effizient in ein optisches Glasfaserkabel übertragen (gekoppelt) werden. Genau solche Fasern bilden bereits heute die Grundlage für die weltweite Datenübertragung im Internet und sollen in Zukunft auch das Quanten-Internet ermöglichen.
Der Clou der neuen Arbeiten: Es ist gelungen, eine optische Glasfaser exakt über dem Quantenpunkt zu positionieren und zu fixieren, wodurch die abgestrahlten Photonen direkt aufgefangen und über große Distanzen weitergeleitet werden können. „Entscheidend dabei ist, dass wir die Oberfläche des Halbleiters, auf der unserer Quantenpunkt sitzt, optisch ‚scannen’ und das Glasfaserkabel dann in einem relativ robusten Prozess bei Raumtemperatur exakt über der Mikrolinse mit Epoxidharz fixieren“, so Tobias Heindel.
Das ganze System aus Halbleiterchip mit Quantenpunkt, Mikrolinse und exakt ausgerichteter und fixierter Glasfaser wird dann in einen sogenannten Stirling-Kühler eingebaut. Bei dem Stirling-Kühler handelt es sich um eine kommerziell verfügbare Apparatur, die dazu dient, den Halbleiterchip auf die benötigten tiefen Temperaturen, nur wenige zehn Kelvin oberhalb des absoluten Temperaturnullpunktes, herunter zu kühlen.
Der große Vorteil dieser Anordnung: Die gesamte sogenannte Q-Source (Quanten-Quelle) inklusive Stirling-Kühler findet in einer durchschnittlichen Schreibtischschublade Platz und benötigt lediglich einen 220V-Netzanschluss.
Zum Vergleich: Typische Quantenlichtquellen der Forscher nehmen meist ein ganzes Labor mit aufwändiger und teurer Helium-Kühltechnik in Anspruch. Das Glasfaserkabel ermöglicht den Transport der Quanten auch über große Distanzen. „Damit bieten sich ganz neue Möglichkeiten für den Einsatz in der Quantenkommunikation“, weiß Tobias Heindel. So könnte die hier entwickelte Q-Source in Zukunft fester Bestandteil abhörsicherer Kommunikationskanäle im Quanten-Internet werden.
Originalveröffentlichung
Schlehahn, S. et al.; "A stand-alone fiber-coupled single-photon source"; Sci. Rep.; 8, 1340 (2018).