Bisher präziseste Beschreibung hoch angeregter Elektronen gelungen
Seit mehr als 60 Jahren versuchen Physiker weltweit, das Verhalten von Elektronen zu verstehen und vorherzusagen. Sie entwickelten eine Vielzahl unterschiedlicher Modelle für das homogene Elektronengas, die Eingang gefunden haben in komplexere Theorien, wie etwa die sogenannte Dichtefunktionaltheorie. Sie hat sich inzwischen als Grundlage der Beschreibung von Atomen, Molekülen und Festkörpern etabliert. Die Genauigkeit der ihr zugrunde liegenden Modelle war allerdings lange Zeit unklar.
In den letzten fünf Jahren hat ein Team um Prof. Michael Bonitz, in Zusammenarbeit mit Kollegen vom Imperial College London (Großbritannien) und vom Los Alamos National Laboratory (USA) hier einen Durchbruch erzielt. Sie entwickelten zwei neue Computersimulationsverfahren, deren Kombination es ermöglicht, das Verhalten der Elektronen für alle relevanten Bedingungen exakt vorherzusagen. Mit diesen sogenannten Quanten-Monte-Carlo-Simulationen aus der Stochastik lassen sich hochdimensionale komplexe Probleme mithilfe der Wahrscheinlichkeitstheorie numerisch lösen. „Unsere Ergebnisse sind die ersten exakten Daten für die thermodynamischen Eigenschaften von Elektronen unter extremen Bedingungen. Damit lassen sich jetzt auch die schon existierenden Modelle zum ersten Mal überprüfen und verbessern“, so Bonitz‘ Ausblick.
Die berechneten Daten stehen Wissenschaftlern weltweit über das Programm „LDA_XC_GDSMFB“ zur Verfügung, das in die Programmbibliothek „libxc“ aufgenommen wurde. Die dort gesammelten Funktionen der Dichtefunktionaltheorie sind frei zugänglich.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.