Weltweit erster Nachweis von strominduzierten Kräften zwischen zwei Molekülen
TU Ilmenau
In ihrem Artikel „Nonequilibrium Bond Forces in Single-Molecule Junctions“ zeigen die Wissenschaftler auf, dass die strominduzierten Kräfte deutlich hervortreten, wenn die Moleküle im Begriff sind, eine chemische Bindung einzugehen. Diese Studie repräsentiert den weltweit ersten eindeutigen Nachweis von strominduzierten Kräften in einem molekularen Kontakt. Neben der exzellenten theoretischen Unterstützung liegt der Erfolg der Arbeit darin begründet, dass die Experimentatoren den in den Simulationen verwendeten Kontakt aus zwei C60-Molekülen und Kupfer-Elektroden (siehe Abbildung) durch die Manipulation von Materie auf atomarer Skala nachgebildet haben. Dieser im Experiment erreichte Modellcharakter des Kontakts erlaubt einen direkten Vergleich zwischen den Ergebnissen der komplexen Transportrechnungen in Dänemark und den erzielten experimentellen Ergebnissen in Ilmenau.
Bei der chemischen Bindung zweier Moleküle bilden sich bindende und antibindende Orbitale aus. Die Stärke der Bindung wird von der Besetzung dieser Orbitale mit Elektronen bestimmt. An dieser Stelle setzt die Motivation für die deutsch-dänische Zusammenarbeit an. Ein elektrischer Strom durch einen molekularen Kontakt wird über Orbitale geleitet. Dabei werden bindende und antibindende Orbitale abweichend vom Gleichgewicht der chemischen Bindung ohne Strom besetzt. Die Bindung könnte also gelockert oder gestärkt, die Kraft zwischen den Molekülen abstoßend oder anziehend ausfallen.
Im Einklang mit den theoretischen Vorhersagen finden die Experimentatoren eine anziehende Kraft zwischen den C60-Molekülen bei Stromfluss, unabhängig von der Polung der Spannungsquelle. Kurz: Bringt man die Besetzung der an der Bindung beteiligten Orbitale durch Stromleitung aus dem Gleichgewicht, dann ersteht eine attraktive Wechselwirkung zwischen den Bindungspartnern.
Für makroskopische elektrische Kontakte ist schon lange das Phänomen der Elektromigration bekannt, bei dem ein elektrischer Strom über die Grenzfläche aus zwei unterschiedlichen Materialien eine unerwünschte Durchmischung der Materialien hervorruft. Man deutet die Elektromigration mit Hilfe des Impulsübertrags der stromtragenden Elektronen auf die Atome der Materialien und spricht häufig von der Wirkung des Elektronenwindes auf die Atompositionen. Das Analogon zum Elektronenwind in der molekularen Elektronik, wo Kontakte nur noch aus einzelnen Molekülen oder Atomen bestehen, sind, wie die Arbeit von Prof. Jörg Kröger zeigt, Kräfte, die aus der gleichgewichtsfernen Besetzung von Molekülorbitalen herrühren.
Die Gruppe von Prof. Jörg Kröger beschäftigt sich seit einigen Jahren mit den Kräften auf atomarer Skala, die häufig im Piko-Newton-Bereich liegen. Dazu wird ein im Jahr 2015 in Betrieb genommenes Rasterkraftmikroskop verwendet, das Kräfte aus Frequenzänderungen einer schnell schwingenden Sonde ermittelt. Ein prominentes Beispiel ist die Bestimmung von Kräften zum Verschieben einzelner Atome auf Oberflächen (Phys. Rev. B 98, 235420 (2018)), womit wichtige Erkenntnisse zum atomaren Ursprung der Reibung erzielt wurden. Weiter hat sich kürzlich gezeigt, dass der Übergang zwischen van-der-Waals-Anziehung und Pauli-Abstoßung zweier Moleküle von der angelegten Spannung abhängt (New J. Phys. 21, 103041 (2019)).
Das Ziel der Arbeiten von Prof. Jörg Kröger ist im Allgemeinen das Aufspüren von physikalischen Mechanismen, um der „Natur in die Karten zu schauen‟. Losgelöst von Anwendungen werden Modellsysteme experimentell aufgebaut und untersucht. Dies erfordert extreme Bedingungen im Experiment, wie ein Ultrahochvakuum (10-9 Pa) und tiefe Temperaturen (≤ -268 °C).