Edelmetallcluster können Katalysatoren leistungsfähig machen und Ressourcen schonen
Optimierte Verteilung von Atomen erlaubt kostengünstigere Produktion
Florian Maurer, KIT
Edelmetallkatalysatoren werden für ein breites Spektrum an Reaktionen eingesetzt. Unter anderem werden sie bei nahezu allen Verbrennungsprozessen genutzt, um Schadstoff-Emissionen zu reduzieren. Häufig bestehen sie aus ganz kleinen Partikeln der Aktivkomponente, beispielsweise eines Edelmetalls, die auf einem Trägermaterial aufgebracht sind. Diese sogenannten Nanopartikel setzen sich wiederum aus mehreren tausend Metallatomen zusammen. „Da aber nur die außen liegenden Atome aktiv an der Reaktion teilnehmen können, bleibt ein Großteil völlig ungenutzt“, erläutert Professor Jan-Dierk Grunwaldt vom Institut für Technische Chemie und Polymerchemie (ITCP) des KIT. Durch Änderungen der Betriebsbedingungen könne sich die Struktur eines solchen Katalysators jedoch stark ändern und damit auch seine Aktivität. „Bei hohen Temperaturen im Abgasstrang eines Autos, die beispielsweise bei einer längeren Autobahnfahrt erreicht werden können, kann die Wechselwirkung zwischen Edelmetall und Träger zur Ausbildung von Einzelatomen führen – das heißt die Metallatome liegen einzeln und isoliert auf dem Träger vor“, so Grunwaldt. „Solche Einzelatomkatalysatoren versprächen eigentlich eine sehr gute Ausnutzung der Edelmetallkomponenten, da sämtliche Atome theoretisch an der Reaktion teilnehmen könnten.“ Entgegen dieser gegenwärtigen Erwartung konnte das Forschungsteam um Grunwaldt zusammen mit den Professoren Christof Wöll vom Institut für Funktionelle Grenzflächen des KIT und Felix Studt vom Institut für Katalyseforschung und -technologie des KIT nun zeigen, dass diese Atome unter Reaktionsbedingungen erst Edelemetallcluster bilden müssen, um aktiv zu sein.
Dafür haben die Forscher die Ausbildung der Einzelatome zunächst gezielt herbeigeführt und deren Struktur während der Reaktion genau untersucht: Mittels hochspezialisierter Spektros¬kopie und theoretischer Berechnungen – erstmals an dieser Katalysatorklasse so eingesetzt – konnte das Team am Beispiel von Platin¬atomen erklären, warum diese häufig eine geringe Aktivität zeigen. „Damit sich Schadstoffe umwandeln lassen, müssen diese im Katalysator in der Regel mit Sauerstoff reagieren. Dafür müssen beide Komponenten zur selben Zeit am selben Ort vorliegen. Mit isolierten Platinatomen gelingt dies jedoch nicht, da der Sauerstoff für die erforderliche Reaktion zu stark an der Trägerkomponente – in unserem Fall Ceroxid – gebunden ist“, sagt Florian Maurer vom ITCP, einer der maßgeblichen Autoren der Studie. „Nach dem Aufbrechen der Platin-Ceroxid-Bindungen können sich Platinatome über die Trägeroberfläche bewegen. Diese Platinatome formen dann in einem weiteren Schritt kleine Platincluster, an welchen die Reaktion viel schneller abläuft als an Einzelatomen.“
Cluster bieten optimale Struktur für hohe Aktivität
Mit seinen Untersuchungen konnte das Team zeigen, dass weder Nanopartikel noch isolierte Atome die höchste Aktivität aufweisen. „Das Optimum liegt dazwischen – bei kleinen Edelmetallclustern“, so Grunwaldt. „Diese nun zu stabilisieren, könnte der Schlüssel sein, um zukünftig substanziell Edelmetalle bei der Herstellung von Katalysatoren einzusparen. Jahrelang war die immer feinere Verteilung der Edelmetallkomponente eine der Hauptstrategien bei dem Design neuer Katalysatoren. Mit unseren Experimenten konnten wir nun deutlich zeigen, wo die Grenzen im atomaren Bereich liegen.“ Die Ergebnisse der Studie sollen nun zum wissensbasierten Design und zur Entwicklung stabilerer und langzeitaktiverer Katalysatoren beitragen. Damit wird sich nun insbesondere das Abgaszentrum Karlsruhe des KIT beschäftigen, dessen wissenschaftliche Leiterin, Dr. Maria Casapu, ebenfalls Co-Autorin der Studie ist.