Flüssige Kraftstoffe aus Kohlendioxid
Elektrokatalysator wandelt CO2 in Multi-Carbon-Produkte um
© Wiley-VCH
Noch immer wird ein Großteil des globalen Energiebedarfs durch fossile Brennstoffe gedeckt und trägt durch das freigesetzte Kohlendoxid zum Treibhauseffekt bei. Um die Erderwärmung zu mindern, sollte nach Möglichkeiten gesucht werden, CO2 als Rohstoff für Grundchemikalien zu nutzen. So könnte eine elektrokatalytische Umsetzung von CO2 durch Strom aus erneuerbaren Energien angetrieben und ein klimaneutraler künstlicher Kohlenstoffkreislauf etabliert werden. Überschüssige Energie aus Photovoltaik und Windenergie ließe sich speichern, indem Kraftstoffe elektrokatalytisch aus CO2 erzeugt und bei Bedarf als Brennstoff genutzt würden. Aufgrund der hohen Energiedichte und Sicherheit bei Lagerung und Transport wäre eine Umwandlung in flüssige Kraftstoffe vorteilhaft. Die elektrokatalytische Herstellung von Produkten mit zwei oder mehr Kohlenstoffatomen (C2+) ist jedoch sehr herausfordernd.
Das Team von der Foshan University (Foshan, Guangdong), der University of Science and Technology of China (Hefei, Anhui) und der Xi'an Shiyou University (Xi'an, Shaanxi) um Fei Hu, Tingting Kong, Jun Jiang und Yujie Xiong hat jetzt einen neuartigen Elektrokatalysator entwickelt, der CO2 zu flüssigen Kraftstoffen mit mehreren Kohlenstoffatomen (C2–4) effizient umsetzt. Hauptprodukte sind Ethanol, Aceton und n-Butanol.
Zur Herstellung des Elektrokatalysators werden dünne Bänder einer Kupfer-Titan-Legierung mit Flusssäure geätzt, um das Titan aus der Oberfläche zu entfernen. So entsteht ein als a-CuTi@Cu bezeichnetes Material mit defektreicher Kupferoberfläche auf einer amorphen CuTi-Legierung. Es weist katalytisch aktive Kupferzentren mit bemerkenswert hoher Aktivität, Selektivität und Stabilität für die Reduktion von CO2 zu C2+-Produkten auf (Faradaysche Gesamteffizienz für C2–4 ca. 49% bei 0,8 V gegen reversible Wasserstoffelektrode, über mindestens drei Monate stabil). Reine Kupferfolie erzeugt dagegen C1-, aber kaum C2+-Produkte.
Während der Reaktion wird ein mehrstufiger Elektronen-Transfer-Prozess über verschiedene Intermediate durchlaufen. Beim neuen Elektrokatalysator spielen die eigentlich inaktiven Titan-Atome unterhalb der Oberfläche eine wichtige Rolle: Sie erhöhen die Elektronendichte der Cu-Atome an der Oberfläche. Dies stabilisiert die Adsorption von *CO, dem Schlüssel-Zwischenprodukt bei der Bildung von Multi-Carbon-Produkten, sorgt für eine hohe Bedeckung der Oberfläche mit *CO und senkt die Energiebarriere für Di- und Trimerisierungen der *CO unter Knüpfung neuer Kohlenstoff-Kohlenstoff-Bindungen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.