Neuartige Materialien weisen Wasser nahezu vollständig ab
Mögliche Anwendung für selbstreinigende Oberflächen in Automobilen oder Gebäuden
MOFs (engl. für Metal-Organic Frameworks) bestehen aus Metallen, die durch Verbindungsstreben aus organischen Molekülen zu Netzwerken mit leeren Poren verbunden sind, ähnlich wie bei einem Schwamm. Ihre Volumeneigenschaften – würde man zwei Gramm dieses Materials entfalten, erhielte man die Fläche eines Fußballfeldes – machen sie interessant für Anwendungsbereiche wie die Gasspeicherung, Kohlendioxidabscheidung oder neue Technologien im Bereich Medizin.
Doch auch die Außenflächen dieser kristallinen Materialien bieten einzigartige Möglichkeiten, die sich das Forschungsteam nun mit einer neuen Idee zunutze machte: Es verankerte Kohlenwasserstoffketten auf dünnen MOF-Filmen. Dabei wurde ein Wasserkontaktwinkel von mehr als 160 Grad beobachtet - je größer der Winkel, den die Oberfläche eines Wassertropfens mit einem Substrat bildet, desto wasserabweisender ist das Material. „Unsere Methode erzeugt superhydrophobe Oberflächen mit Kontaktwinkeln, die deutlich höher sind als die anderer glatter Oberflächen und Beschichtungen“, sagt Professor Christof Wöll vom Institut für Funktionelle Grenzflächen des KIT. „Zwar wurden die Benetzungseigenschaften von MOF-Pulverpartikeln erforscht, aber die Verwendung homogener MOF-Dünnschichten für diesen Zweck ist ein bahnbrechendes Konzept.“
Nächste Generation von „superhydrophoben“ Materialien
Diese Ergebnisse schreibt das Team der bürstenartigen Anordnung (engl. polymer brushes) der Kohlenwasserstoffketten auf den MOFs zu. Diese können nach der Verankerung auf den MOF-Materialien besonders gut „Knäuel“ bilden – ein Zustand der Unordnung, den die Wissenschaft als „Zustand hoher Entropie“ bezeichnet und der für die wasserabweisenden Eigenschaften wesentlich ist. Auf anderen Materialien habe man diesen Zustand für verankerte Kohlenwasserstoffketten nicht beobachtet, so die Forschenden.
Bemerkenswerterweise erhöhte sich der Wasserkontaktwinkel auch nicht durch eine Perfluorierung der Kohlenwasserstoffketten, also durch ein Ersetzen der Wasserstoffatome durch Fluor. Bei Materialien wie Teflon führt Perfluorierung zu besonders wasserabweisenden Eigenschaften. Bei dem neu entwickelten Material habe sie den Wasserkontaktwinkel aber sogar deutlich verringert, so das Team. Weitere Analysen in Computersimulationen hätten bestätigt, dass die perfluorierten Moleküle – anders als die Kohlenwasserstoffketten - nicht den energetisch günstigen Zustand hoher Entropie annehmen können.
Darüber hinaus variierte das Forschungsteam die Oberflächenrauheit ihrer SAM@SURMOF-Systeme im Nanometerbereich. Dadurch gelang es, die Haftung weiter zu reduzieren. Wassertropfen beginnen dann schon bei extrem kleinen Neigungswinkeln abzurollen, die wasserabweisenden bzw. selbstreinigenden Eigenschaften werden nochmals deutlich erhöht.
„Unsere Arbeit bietet auch eine umfassende theoretische Analyse, die unerwartete experimentelle Verhaltensweisen mit dem Zustand hoher Entropie der an MOF-Filme angehefteten Moleküle verknüpft“, sagt Professor Uttam Manna von der Abteilung für Chemie des IITG. „Diese Studie wird die Gestaltung und Produktion der nächsten Generation von Materialien mit optimalen hydrophoben Eigenschaften verändern.“
Originalveröffentlichung
Evgenia Bogdanova, Modan Liu, Patrick Hodapp, Angana Borbora, Wolfgang Wenzel, Stefan Bräse, André Jung, Zheqin Dong, Pavel A. Levkin, Uttam Manna, Tawheed Hashem, Christof Wöll; "Functionalization of monolithic MOF thin films with hydrocarbon chains to achieve superhydrophobic surfaces with tunable water adhesion strength"; Materials Horizons, 2025