Die Chemie explodierender Sterne
Meteorit birgt Hinweise auf die Bildung von Schwefelmolekülen im Sternenstaub aus Supernova
© Peter Hoppe, MPI for Chemistry
Modelle sagten die Bildung von Schwefelmolekülen in den Überresten von explodierenden Sternen – den Supernovae – bereits voraus. Den Nachweis dafür erbrachte jetzt ein Forscherteam aus Deutschland, Japan und den USA mit Hilfe von Isotopenanalysen von Meteoriten-Sternenstaub.
Das Team um Peter Hoppe, Astrophysiker am Mainzer Max-Planck-Institut für Chemie, isolierte zunächst tausende, etwa 0.1 bis 1 Mikrometer große Siliziumkarbid-Sternenstaubkörnchen aus dem Meteoriten Murchinson, den man bereits 1969 auf der Erde fand. Die Sternenstaubkörner stammen aus einer Supernova und sind älter als unser Sonnensystem. In den Proben bestimmten die Forscher mit einem hochempfindlichen Spektrometer, der sogenannten NanoSIMS, die Isotopenverteilung. Hierbei schießt ein Ionenstrahl auf die einzelnen Sternenstaubkörner und löst aus der Oberfläche Atome heraus. Ein Spektrometer trennt sie dann nach ihrer Masse und misst die Isotopen-Häufigkeit. Isotope eines chemischen Elements besitzen die gleiche Anzahl an Protonen, aber unterschiedlich viele Neutronen.
Bei fünf Siliziumkarbid-Proben fanden die Astrophysiker eine ungewöhnliche Isotopenverteilung: Sie wiesen viele schwere Silizium- und wenig schwere Schwefelisotope nach, was nicht zu bisherigen Modellen über die Isotopenhäufigkeiten in Sternen passt. Gleichzeitig konnten sie Zerfallsprodukte von radioaktivem Titan nachweisen, welches nur in den innersten Zonen einer Supernova entstanden sein kann. Das wiederum beweist, dass die jetzt analysierten Sternenstaubkörner tatsächlich aus einer Supernova stammen.
Ein Beleg für das Modell von der Chemie in Supernova-Überresten
„Die von uns gefundenen Sternenstaubkörner sind extrem selten. Bezogen auf das gesamte Meteoritenmaterial machen sie nur etwa den 100 Millionsten Teil aus. Dass wir sie gefunden haben, ist großer Zufall – besonders, da wir eigentlich auf der Suche nach Siliziumkarbid-Sternenstaub mit isotopisch leichtem Silizium waren“, sagt Peter Hoppe. „Die Signatur mit isotopisch schwerem Silizium und leichtem Schwefel kann nur dadurch plausibel erklärt werden, dass in den innersten Zonen der Überreste einer Supernova Siliziumsulfid-Moleküle gebildet wurden.“ Anschließend wurden die Sulfid-Moleküle von sich bildenden Siliziumkarbid-Kristallen umschlossen. Diese Kristalle sind dann vor etwa 4,6 Milliarden Jahren in den solaren Urnebel gelangt und wurden in die entstehenden Planeten und Planetoiden eingebaut, von denen auch der Meteorit Murchison stammt.
Mit Hilfe von Infrarot-Spektren hat man schon Kohlenmonoxid und Siliziumoxid in den Überresten von Supernova-Explosionen nachgewiesen. In Modellen wurde zwar auch die Bildung von Schwefelmolekülen schon vorausgesagt, konnte aber bisher nicht bewiesen werden. Die Messungen am Siliziumkarbid-Sternenstaub bestätigen nun die Vorhersagen, nach denen in den inneren Zonen des Supernova-Auswurfmaterials einige Monate nach der Explosion bei Temperaturen von mehreren Tausend Grad Celsius Siliziumsulfid-Moleküle entstehen.
Der untersuchte Meteorit verdankt seinen Namen der australischen Stadt Murchison, in der er bereits 1969 gefunden wurde. Für Astronomen ist er ein unerschöpfliches Tagebuch zur Entstehung unseres Sonnensystems, da er seit seiner Bildung nahezu unverändert blieb. Neben den Sternenstaub-Einschlüssen aus dem Auswurf von Supernovae transportierte Murchison auch Staub auf die Erde, der sich im Wind Roter Riesensterne gebildet hat. Durch weitere Analysen hoffen die Forscher noch mehr über den Ursprung der Sterne zu lernen, aus denen sie entstanden sind.
Originalveröffentlichung
Peter Hoppe, Wataru Fujiya and Ernst Zinner; Sulfur molecule chemistry in supernova ejecta recorded by silicon carbide stardust; The Astrophysical Journal Letters, published online, 12 January 2012
Meistgelesene News
Originalveröffentlichung
Peter Hoppe, Wataru Fujiya and Ernst Zinner; Sulfur molecule chemistry in supernova ejecta recorded by silicon carbide stardust; The Astrophysical Journal Letters, published online, 12 January 2012
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
S4 T-STAR von Bruker
TXRF-Spektrometer: Sub-ppb Nachweisgrenzen & 24/7 Analytik
Minimale Betriebskosten, weil Gase, Medien oder Laborausrüstung entfallen
ERASPEC von eralytics
Einfachste Kraftstoffanalyse in Sekunden mit ERASPEC
Bestimmung von bis zu 40 Kraftstoffparametern auf Knopfdruck
ALPHA II von Bruker
Chemische Analyse leicht gemacht: Kompaktes FT-IR-System
Steigern Sie die Effizienz Ihrer Routineanalysen mit benutzerfreundlicher Technologie
PlasmaQuant 9100 von Analytik Jena
Neues ICP-OES PlasmaQuant 9100 für komplexe Probenmatrices
Mehr sehen. Mehr wissen. ICP-OES vereinfacht Analyse matrixlastiger Proben
ZEEnit von Analytik Jena
Zeeman-Technik mit maximaler Empfindlichkeit und Applikationsvielfalt
Quergeheizte Graphitrohrofen für optimale Atomisierungsbedingungen und hohen Probendurchsatz
NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung
PlasmaQuant MS Elite von Analytik Jena
Massenspektrometer für hochempfindliche Forschungsanwendungen und niedrigste Nachweisgrenzen
Die Erfolgsformel in der LC-ICP-MS – PlasmaQuant MS-Serie und PQ LC
NEX CG II von Applied Rigaku Technologies
Elementaranalyse auf ppb-Niveau für exakte Ergebnisse
2060 Raman Analyzer von Metrohm
Selbstkalibrierendes Inline-Raman Spektrometer
Feststoffe, Flüssigkeiten und Gase analysieren - für reproduzierbare, genaue Ergebnisse im Prozess
S2 PICOFOX von Bruker
Schnelle und präzise Spurenelementanalyse unterwegs
TXRF-Technologie für minimale Proben und maximale Effizienz
Mikrospektrometer von Hamamatsu Photonics
Ultrakompaktes Mikrospektrometer für vielseitige Anwendungen
Präzise Raman-, UV/VIS- und NIR-Messungen in tragbaren Geräten
Agera von HunterLab Europe
Farbe und Glanzgrad gleichzeitig messen - und das sekundenschnell
Einfach zu bedienendes Farbmessgerät: normkonform, robust und präzise
INVENIO von Bruker
FT-IR Spektrometer der Zukunft: INVENIO
Völlig frei aufrüstbares und konfigurierbares FT-IR Spektrometer
novAA® 800 von Analytik Jena
Der Analysator für Sie - novAA 800-Serie
Das zuverlässige Multitalent für die effiziente und kostengünstige Routineanalyse
SPECORD PLUS von Analytik Jena
Die neue Generation der Zweistrahlphotometer von Analytik Jena
Der moderne Klassiker garantiert höchste Qualität
contrAA 800 von Analytik Jena
contrAA 800 Serie – Atomic Absorption. Redefined
Kombiniert das Beste der klassischen Atomabsorption mit den Vorteilen von ICP-OES-Spektrometern
ZSX Primus IVi von Rigaku
Hochpräzise WDXRF-Analyse für industrielle Anwendungen
Maximale Empfindlichkeit und Durchsatz für leichte Elemente und komplexe Proben
Micro-Z ULS von Rigaku
Schwefelgehalt in Kraftstoffen genau messen: WDXRF-Analysator
Zuverlässige Routineuntersuchungen mit 0,3 ppm Nachweisgrenze und kompaktem Design
BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios von Bios Analytique
Ihr Spezialist für Vermietung und Leasing von Laborinstrumenten in Europa
Beim Finanzieren geht es nicht nur ums Geld verleihen - Es geht um Lösungen, die Wert schaffen
SR Series Spectrometer von Ocean Insight
Der neue Ocean SR2 liefert das beste SNR seiner Klasse für konfigurierbare Spektrometer
Hochgeschwindigkeits-Spektrenerfassung mit fortschrittlicher Signal-Rausch-Leistung
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.