Wenn Chemiker Rasseln erfinden

17.02.2014 - Schweiz

Vom Schweizerischen Nationalfonds (SNF) unterstützte Chemikerinnen haben einen neuen einstufigen Syntheseprozess zur Verkapselung von Nanopartikeln entwickelt. Dadurch könnte sich die Wirksamkeit der antimikrobiellen Beschichtung von Implantaten verbessern.

Die westliche Bevölkerung lebt länger bei guter Gesundheit. Immer mehr Leute, zum Beispiel junge Pensionierte, lassen sich Implantate einsetzen, um weiterhin ihren Aktivitäten nachgehen zu können. Aber solche Eingriffe sind nicht ohne Risiken: Während der Operation können Bakterien auf die Oberfläche des Implantats gelangen und sich dort entwickeln. Wenn sich die Bakterien vermehren und einen Biofilm bilden, muss das Implantat entfernt und die Wunde gesäubert werden. Danach muss die Infektion völlig ausheilen, bevor ein neues Implantat eingesetzt werden kann. Diese Komplikationen treten bei zwei Prozent der künstlichen Hüftgelenke auf, bei fünf bis zehn Prozent der künstlichen Kniegelenke und sogar bei bis zu 50 Prozent der Stent- und Shunt-Operationen am Herz.

Die Vermehrung von Bakterien auf der Oberfläche kann mit einer antimikrobiellen Beschichtung bekämpft werden. Eine Forschungsgruppe an der Universität Freiburg unter der Leitung von Katharina Fromm hat eine solche Beschichtung entwickelt. Sie wird gegenwärtig im Rahmen eines KTI-Projekts mit in-vivo Tests geprüft. Die Beschichtung gibt während etwa drei Monaten fortlaufend antimikrobielle Silberionen ab.

Beschichtung mit längerer Wirksamkeit

Um die Wirksamkeit zu verlängern, arbeiten die Forschenden an einer Beschichtung der zweiten Generation, in der die Silber-Nanopartikel in Siliziumdioxid eingekapselt werden. Die Kapseln verbessern die Stabilität der Nanopartikel, indem sie sie von der Umwelt abschirmen. Sie verlangsamen auch die Abgabe des Silbers und verlängern so die Wirksamkeit der Beschichtung. Ein weiterer Vorteil dieser Methode liegt darin, dass Körperzellen die eingekapselten Silber-Nanopartikel besser tolerieren als „nackte“.

Die Forschenden haben nun im Rahmen des Nationalen Forschungsprogramms «Intelligente Materialien» (NFP 62) einen einstufigen Syntheseprozess zur Verkapselung von Nanopartikeln entwickelt. Der Prozess macht es auch möglich, die Porosität und die Grösse der Kapsel im Verhältnis zu den Nanopartikeln anzupassen. Unter dem Mikroskop sieht das Ganze wie eine nanoskalige Rassel aus.

Gezielte Abgabe

Um die Beschichtung noch effektiver zu machen, arbeiten die Forschenden in Zusammenarbeit mit der Gruppe von Prof. Christian Bochet momentan an Sensoren, die Bakterien erkennen und sich auf der Kapsel anbringen lassen. Dadurch würde das Silber nur dann abgegeben, wenn sich ein Schädling in der Nähe befindet. Diese gezielte Abgabe würde nicht nur die Wirksamkeit weiter verlängern, sie würde auch dazu führen, dass Silber nicht unnötigerweise in den Organismus gelangt.

Die von den Forschenden entwickelte Synthese macht es möglich, verschiedene Kapseln für verschiedene Nanopartikel zu schaffen. Deshalb sind vielfältige Anwendungen für diese Nano-Rasseln denkbar: Durch die Kontrolle der Porosität der Kapsel kann man zum Beispiel kontrollieren, welche Moleküle in Berührung mit den Nanopartikeln kommen. So liesse sich etwa ein Nanoreaktor für ausgewählte chemische Reaktionen kreieren. Die Technik könnte aber auch neue Batterien ermöglichen, in denen jedes eingekapselte Nanopartikel die Rolle einer Elektrode übernehmen würde.

Originalveröffentlichung

Magdalena Priebe and Katharina M. Fromm (2014). One-pot synthesis and catalytic properties of encapsulated nanoparticles in silica nanocontainers. Particle & Particle Systems Characterization

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Synthese

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren