Mehr Energie – weniger Asche

Universität Jena und TU Bergakademie Freiberg starten Projekt HITECOM zur effizienteren Verbrennung fossiler Energieträger

25.02.2014 - Deutschland

Das kennt jeder, der schon einmal an einem gemütlichen Kaminfeuer gesessen hat: Sobald das wärmende Feuer erloschen ist, heißt es die Asche zu entsorgen. Ähnliches passiert auch, wenn Kohle in der Industrie zur Energiegewinnung verbrennt – übrig bleibt eine Menge Asche. „Dieser Abfall zeigt, dass bei der herkömmlichen Verbrennung nur ein Teil der in der Kohle gespeicherten Energie genutzt wird“, sagt Prof. Dr. Stefan Nolte von der Friedrich-Schiller-Universität Jena. Angesichts der wieder steigenden Bedeutung des Energieträgers Kohle in Deutschland und des stetig wachsenden Energiehungers in den Industrie- und Schwellenländern seien daher neue, effizientere Verfahren zur Vergasung der Kohle gefragt, so der Physiker weiter. Für bisherige Verfahren, wie die sogenannte Wirbelschicht- und die Festbettvergasung, fehlen für die Weiter- und Neuentwicklung bislang fundierte Modellsysteme.

Jan-Peter Kasper/FSU

Stromgewinnung aus Kohle. Bei der herkömmlichen Verbrennung wird aber nur ein Teil der gespeicherten Energie genutzt. Im Projekt HITECOM wollen die Forscher den Weg zu effizienteren Verfahren ebnen.

Die Prozesse während der Vergasung fossiler Energieträger im Detail zu studieren und so den Weg für eine effizientere Energieträgerwandlung zu ebnen, das ist das Ziel des soeben gestarteten Forschungsvorhabens HITECOM an der Universität Jena und der TU Bergakademie Freiberg. Das Bundesministerium für Bildung und Forschung fördert das Projekt, das an den Zentren für Innovationskompetenz (ZIK) „ultra optics“ (Jena) und „Virtuhcon“ (Freiberg) angesiedelt ist, mit insgesamt rund 2,2 Millionen Euro.

HITECOM steht für „High Temperature Conversion Optical Measurement“. In dem gemeinsamen Projekt wollen die Forscher die an Brennstoffpartikeln ablaufenden Reaktionen und Veränderungen unter kontrollierten Laborbedingungen hochaufgelöst erfassen. Dazu simulieren sie den Vergasungsprozess und nutzen optische in-situ Messtechniken, um Hochtemperatur-Konversionsprozesse abzubilden und realitätsnah zu beschreiben. „Davon versprechen wir uns, erstmals die vorhandenen numerischen Modelle dieser komplexen Vorgänge experimentell zu validieren, aus denen dann eine effiziente Strategie zur Weiterentwicklung entsprechender Technologien hervorgehen kann“, so Projektleiter Dr. Roland Ackermann vom Institut für Angewandte Physik der Uni Jena. Neben dem Einfluss des Drucks und der Temperatur wollen die Forscher aus Jena und Freiberg auch den Einfluss der Strömungsgeschwindigkeit der Gase eingehend untersuchen.

Die Forscher am ZIK „ultra optics“ um Prof. Nolte und Dr. Ackermann werden sich im Rahmen des Projekts auf die Entwicklung der optischen in situ-Messtechnik konzentrieren. Mit ihrer Hilfe wird es möglich sein, bislang nicht zugängliche Parameter der Vergasung unter hohem Druck und hoher Temperatur bei hoher räumlicher Auflösung zu messen. Darüber hinaus wird mit „fs-CARS“ ein Spektroskopieverfahren entwickelt, welches für ein verbessertes Verständnis der Moleküldynamik in Gasgemischen sorgen soll.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren