Ballon über Ontario: Forscher messen ozonschädliches Brom

Einzigartige Kombination von Fernerkundungsinstrumenten zur Beobachtung der Stratosphäre

10.09.2014 - Kanada

Wie viel Brom befindet sich in der Stratosphäre, und wie schädlich sind Bromverbindungen für die Ozonschicht? Diese Fragen zu beantworten, ist Ziel einer am Karlsruher Institut für Technologie (KIT) koordinierten Messkampagne: In Timmins (Ontario/Kanada) startete am 7.9.2014 ein Ballon, dessen Gondel eine einzigartige Kombination von Fernerkundungsinstrumenten beherbergt. Diese ergänzen sich optimal bei der Messung stratosphärischer Substanzen. An der Kampagne sind auch das Deutsche Zentrum für Luft und Raumfahrt (DLR) und die Universität Heidelberg beteiligt.

Hermann Oelhaf, KIT

Der Ballon am Start. In der Gondel sind drei komplexe Fernerkundungsinstrumente, die einen breiten Teil des elektromagnetischen Spektrums abdecken.

Substanzen, die Brom enthalten, können die Ozonschicht abbauen. Ihre Emission ist etwa zur Hälfte natürlichen Ursprungs und zur Hälfte vom Menschen verursacht, beispielsweise über Brandschutzmaterialien, Feuerlöscher, Pestizide und Fungizide. Obwohl die Konzentration von Brom in der Stratosphäre – der zweiten Schicht der Erdatmosphäre – mehr als hundertmal geringer ist als die Konzentration von ebenfalls ozonschädlichem Chlor, ist die Wirkung auf die Ozonschicht vergleichbar. Denn Brom wird unter dem Einfluss von Licht viel leichter aus seinem Reservoir Bromnitrat in eine aktive Form umgewandelt als Chlor aus seinem Reservoir Chlornitrat.

Dank des Montrealer Protokolls über die Reduzierung der Produktion Ozon-schädlicher Stoffe, das 1989 in Kraft trat, nimmt die Gesamtmenge von Chlor in der Stratosphäre seit den 1990er-Jahren ab. Die Gesamtmenge von Brom hingegen hat erst vor einigen Jahren ihr Maximum erreicht und beginnt nun langsam zu sinken. Dadurch hat die relative Ozongefährlichkeit von Brom gegenüber Chlor noch zugenommen. Die Menge von Brom in der Stratosphäre sowie wichtige Details seiner Photochemie sind bis jetzt weniger gut als bei Chlor erforscht. So gibt es bisher keine simultane Messung der wichtigsten Bromsubstanzen Bromoxyd (BrO) und Bromnitrat (BrONO2). Dies erschwert die Bestimmung der Gesamtmenge von Brom in der Stratosphäre sowie die Einschätzung der Gefährlichkeit von Brom.

Der nun in Timmins (Ontario/Kanada) gestartete Ballon ist rund 400.000 Kubikmeter groß, trägt eine Nutzlast von rund 760 Kilogramm und steigt bis nahezu 40 Kilometer Höhe auf. Die Gondel beherbergt drei komplexe Fernerkundungsinstrumente, die einen breiten Teil des elektromagnetischen Spektrums abdecken und sich bei der Messung stratosphärischer Substanzen ideal ergänzen: das Infrarot-Spektrometer MIPAS-B des KIT-Instituts für Meteorologie und Klimaforschung – Atmosphärische Spurengase und Fernerkundung (IMK-ASF), das Fernes-Infrarot-/Sub-mm-Spektrometer TELIS des Deutschen Zentrums für Luft- und Raumfahrt (DLR) und das UV-/vis-Spektrometer mini-DOAS der Universität Heidelberg. „Neben Temperatur und Wolkenparametern kann diese weltweit einzigartige Kombination von Instrumenten rund 40 ozon-und klimarelevante Spurengase simultan messen“, erklärt der Leiter der Kampagne, Hermann Oelhaf vom IMK-ASF des KIT. Fernerkundung bedeutet, dass die Gase vor Ort nicht direkt gemessen werden, sondern elektromagnetische Strahlung detektiert wird. Aus dieser werden dann die atmosphärischen Parameter extrahiert, da diese mit der solaren und/oder terrestrischen Strahlung wechselwirken.

Die am IMK-ASF des KIT entwickelte Lagestabilisierung der Gondel sorgt dafür, dass alle drei Instrumente dieselben Luftmassen erfassen. Die Fernerkundungsmethode ermöglicht außerdem die zwei- und dreidimensionale tageszeitabhängige kontinuierliche Erfassung der Spurengase. So lassen sich die photochemischen Reaktionen der beteiligten Spezies untersuchen – eine wichtige Voraussetzung zur Verbesserung von Atmosphären- und Klimamodellen. Die Kampagne ist in eine internationale Ballonkampagne unter dem Dach einer Kooperation zwischen den französischen und kanadischen Raumfahrtbehörden CNES und CSA eingebunden.

Primäres Ziel der weltweit einzigartigen Messungen ist die genaue höhenabhängige Erfassung der Bilanz des reaktiven Broms in der Stratosphäre samt der wichtigsten Verbindungen der Bromfamilie, besonders BrO und BrONO2. Darüber hinaus untersuchen die Forscher, wie realistisch die verfügbaren numerischen Modelle die Bromchemie simulieren und wie zuverlässig die im Labor gemessenen Reaktionskonstanten bei allen für Brom wichtigen Reaktionen sind.

Da die MIPAS-B/TELIS/mini-DOAS-Kombination praktisch alle ozon- und klimarelevanten Gase erfassen kann, dient das Projekt auch dazu, Bilanzen, Verteilung und photochemische Kopplung für alle chemischen Familien zu untersuchen sowie die Vertikalprofile wichtiger klimawirksamer Gase zu erfassen. Überdies werden die Messungen zur Validierung der noch aktiven Satellitengeräte MLS/AURA (USA) und ACE-FTS (Canada) verwendet.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

ERASPEC

ERASPEC von eralytics

Einfachste Kraftstoffanalyse in Sekunden mit ERASPEC

Bestimmung von bis zu 40 Kraftstoffparametern auf Knopfdruck

S4 T-STAR

S4 T-STAR von Bruker

TXRF-Spektrometer: Sub-ppb Nachweisgrenzen & 24/7 Analytik

Minimale Betriebskosten, weil Gase, Medien oder Laborausrüstung entfallen

Totalreflexions-Röntgenfluoreszenzspektrometer
ALPHA II

ALPHA II von Bruker

Chemische Analyse leicht gemacht: Kompaktes FT-IR-System

Steigern Sie die Effizienz Ihrer Routineanalysen mit benutzerfreundlicher Technologie

FT-IR-Spektrometer
ZEEnit

ZEEnit von Analytik Jena

Zeeman-Technik mit maximaler Empfindlichkeit und Applikationsvielfalt

Quergeheizte Graphitrohrofen für optimale Atomisierungsbedingungen und hohen Probendurchsatz

AAS-Spektrometer
PlasmaQuant MS Elite

PlasmaQuant MS Elite von Analytik Jena

Massenspektrometer für hochempfindliche Forschungsanwendungen und niedrigste Nachweisgrenzen

Die Erfolgsformel in der LC-ICP-MS – PlasmaQuant MS-Serie und PQ LC

PlasmaQuant 9100

PlasmaQuant 9100 von Analytik Jena

Neues ICP-OES PlasmaQuant 9100 für komplexe Probenmatrices

Mehr sehen. Mehr wissen. ICP-OES vereinfacht Analyse matrixlastiger Proben

ICP-OES-Spektrometer
NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
Agera

Agera von HunterLab Europe

Farbe und Glanzgrad gleichzeitig messen - und das sekundenschnell

Einfach zu bedienendes Farbmessgerät: normkonform, robust und präzise

Kolorimeter
Mikrospektrometer

Mikrospektrometer von Hamamatsu Photonics

Ultrakompaktes Mikrospektrometer für vielseitige Anwendungen

Präzise Raman-, UV/VIS- und NIR-Messungen in tragbaren Geräten

Mikrospektrometer
S2 PICOFOX

S2 PICOFOX von Bruker

Schnelle und präzise Spurenelementanalyse unterwegs

TXRF-Technologie für minimale Proben und maximale Effizienz

Totalreflexions-Röntgenfluoreszenzspektrometer
2060 Raman Analyzer

2060 Raman Analyzer von Metrohm

Selbstkalibrierendes Inline-Raman Spektrometer

Feststoffe, Flüssigkeiten und Gase analysieren - für reproduzierbare, genaue Ergebnisse im Prozess

contrAA 800

contrAA 800 von Analytik Jena

contrAA 800 Serie – Atomic Absorption. Redefined

Kombiniert das Beste der klassischen Atomabsorption mit den Vorteilen von ICP-OES-Spektrometern

ICP-OES-Spektrometer
novAA®  800

novAA® 800 von Analytik Jena

Der Analysator für Sie - novAA 800-Serie

Das zuverlässige Multitalent für die effiziente und kostengünstige Routineanalyse

SPECORD PLUS

SPECORD PLUS von Analytik Jena

Die neue Generation der Zweistrahlphotometer von Analytik Jena

Der moderne Klassiker garantiert höchste Qualität

INVENIO

INVENIO von Bruker

FT-IR Spektrometer der Zukunft: INVENIO

Völlig frei aufrüstbares und konfigurierbares FT-IR Spektrometer

FT-IR-Spektrometer
ZSX Primus IV/IVi

ZSX Primus IV/IVi von Rigaku

Hochpräzise WDXRF-Analyse für industrielle Anwendungen

Maximale Empfindlichkeit und Durchsatz für leichte Elemente und komplexe Proben

Micro-Z ULS

Micro-Z ULS von Rigaku

Schwefelgehalt in Kraftstoffen genau messen: WDXRF-Analysator

Zuverlässige Routineuntersuchungen mit 0,3 ppm Nachweisgrenze und kompaktem Design

WDXRF-Spektrometer
BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios von Bios Analytique

Ihr Spezialist für Vermietung und Leasing von Laborinstrumenten in Europa

Beim Finanzieren geht es nicht nur ums Geld verleihen - Es geht um Lösungen, die Wert schaffen

Laborgeräte
SPECTRO ARCOS

SPECTRO ARCOS von SPECTRO Analytical Instruments

Optisches Emissions-Spektrometer mit induktiv gekoppeltem Plasma (ICP-OES) für höchste Ansprüche

Das SPECTRO ARCOS ICP-OES bietet Elementanalytik auf einem neuen Niveau

ICP-OES-Spektrometer
SR Series Spectrometer

SR Series Spectrometer von Ocean Insight

Der neue Ocean SR2 liefert das beste SNR seiner Klasse für konfigurierbare Spektrometer

Hochgeschwindigkeits-Spektrenerfassung mit fortschrittlicher Signal-Rausch-Leistung

Spektrometer
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...