Ultraschnelle Röntgentomographie enthüllt Black Box
Forscher liefern erstmals Einblicke in Strömungen statischer Mischer
HZDR/Michael Voigt
Einer der häufigsten Prozesse der chemischen Industrie ist das Verteilen und Lösen von Gas in Flüssigkeiten. Neben klassischen Anlagen wie Rührkessel und Blasensäulen werden dafür verstärkt sogenannte statische Mischer eingesetzt. Bei dieser Methode mixen ausgeklügelte Anordnungen von Mischelementen, wie spiralförmige Flügel oder gekreuzte Stege, direkt in der Rohrleitung verschiedene Stoffe, zum Beispiel Gas und Flüssigkeit. „Wie genau dieser Prozess abläuft, wissen wir bislang nicht“, erklärt Dr. Markus Schubert vom Institut für Fluiddynamik am HZDR. „Wir haben es quasi mit einer Black Box zu tun, bei der wir erst nach der Mischstrecke das Ergebnis erfahren.“ Detaillierte Kenntnisse sind aber notwendig, „da die Kräfte, die dabei wirken, auch dazu führen könnten, dass das Gas und die Flüssigkeit getrennt werden, was fatal wäre“, erläutert der Ingenieur. Optimale Designparameter sind deshalb äußerst wichtig.
Reine Simulationen mit dem Computer, die oft für solche Probleme eingesetzt werden, sind bisher nicht ausreichend leistungsstark, da die Strömungen zu chaotisch sind. Der Dresdner Forscher hat deswegen gemeinsam mit seinen Kollegen eine neuartige Methode eingesetzt: die ultraschnelle Röntgentomographie. Das Prinzip ist dabei das gleiche wie bei der medizinischen Anwendung. Der „Patient“ ist in diesem Fall jedoch kein Mensch, sondern die Strömung aus Gas und Flüssigkeit. „Diese ist jedoch sehr dynamisch. Daher müssen wir eine schnellere Methode nutzen“, beschreibt Schubert die Herausforderung.
1.000 Bilder in nur einer Sekunde
Ein schnell ablenkbarer Elektronenstrahl wird dafür auf ein Target aus Wolfram gerichtet. Dadurch entsteht eine bewegliche Röntgenquelle, so dass die Strömung aus allen Richtungen durchstrahlt werden kann. Diese Strahlung wird von der Flüssigkeit stärker und vom Gas weniger geschwächt. Aus vielen einzelnen Röntgenprojektionen lassen sich anschließend Schnittbilder rekonstruieren, mit denen Schubert die Strömung analysieren kann. 1.000 Bilder in nur einer Sekunde sind so kein Problem. Selbst einzelne, in der Flüssigkeit verteilte Gasblasen und deren Weg durch die Mischsegmente werden auf diese Weise leicht sichtbar.
Vor allem die Blasengrößenverteilung interessiert Markus Schubert: „Der Stofftransport erfolgt über die Oberflächen dieser Gasblasen. Kleine, feinverteilte Gasblasen intensivieren ihn, was gewünscht ist. Dabei soll möglichst wenig Energie, also in diesem Fall Pumpleistung, verbraucht werden. Im untersuchten Mischer mit spiralförmig angeordneten Flügeln konkurrieren allerdings verschiedene physikalische Prozesse miteinander. Einerseits zerteilen die Turbulenzen die Blasen. Andererseits verschmelzen sie teilweise auch wieder, da die Zentrifugalkräfte die leichtere Gasphase von dem schwereren Stoff, also der Flüssigkeit, trennen.“
Um zu testen, welche Auswirkung die Mischerelemente auf die Strömung und die Blasenbildung haben, variierten die Dresdner Wissenschaftler systematisch die Länge der Mischstrecke und die Stoffmengenströme. Für die untersuchten Bedingungen bestimmten sie den Leistungseintrag und die Verteilung unterschiedlicher Blasengrößen. „Wir konnten zeigen, dass bei spiralförmigen Elementen das Ziel des Mischprozesses, also möglichst viele kleine Blasen, durch die erwähnte Separation der beiden Stoffe seine Grenzen hat. Daraus können wir Rückschlüsse für die optimale Anordnung der Einbauten und die Länge der Strecke ziehen.“
Insgesamt konnten die Rossendorfer Wissenschaftler mit ihrer kürzlich veröffentlichten Studie (Chemical Engineering Journal) wichtige Parameter für den optimalen Betrieb statischer Mischer ermitteln. Um die Wechselwirkungen zwischen Design und Strömung noch genauer zu erkunden, wollen sie nun weitere Mischerstrukturen analysieren – Untersuchungen, die die Industrie im Gegensatz zu Forschungszentren nicht leisten kann, wie Schubert betont: „Für Unternehmen kommt es natürlich darauf an, welcher Mischertyp ein gutes Endergebnis – also einen guten Stofftransport – bringt. Deshalb greifen sie auf bewährte Designanordnungen zurück. Das heißt aber nicht, dass das auch die besten sind.“ An dieser Stelle setzen Forscher, wie Markus Schubert, an.