Teilchenphysik: Roulettespiel im Mikrokosmos
Wenn man einen Magneten auf einen Tisch legt und einen zweiten darüber hält, erscheint dieser aufgrund der Anziehung durch den ersten Magneten schwerer, als er eigentlich ist. Durch die Wechselwirkung der beiden entsteht also scheinbar etwas Neues mit veränderten Eigenschaften. Das ist ein einfaches Model für ein so genanntes Quasi-Teilchen. Verringert man nun sukzessive den Abstand der Magneten, wird die Anziehungskraft zwischen ihnen immer größer. Irgendwann ist sie so groß, dass sie die Schwerkraft überwiegt: Die beiden Magneten schnappen zusammen.
Ganz ähnlich geht es im Mikrokosmos zu. Auch kleinste Materieteilchen können miteinander in Wechselwirkung treten und dabei Quasi-Teilchen bilden. Wenn diese Wechselwirkung stark genug ist, schnappen die Teilchen ebenfalls zusammen: Sie binden aneinander. Doch was geschieht dabei genau? Experimentell lässt sich diese Frage nur eingeschränkt beantworten. Die Wissenschaftler haben den Vorgang daher am Computer nachgestellt. In ihrer Simulation ließen sie dazu ein fremdes Teilchen – eine Verunreinigung – in einen „See“ von Neutronen eintauchen. Dabei variierten sie, wie stark das Teilchen mit den Neutronen wechselwirkte.
Widerspruch zur Theorie
Bei einer schwachen Wechselwirkung würde man lediglich erwarten, dass das fremde Teilchen die Neutronen etwas zu sich herüberzieht und so ein Quasi-Teilchen mit größerer Masse entsteht. Bei einer starken Wechselwirkung sollte das Teilchen dagegen mit einem Neutron eine Bindung eingehen – genauso, wie zwei Magneten zusammenschnappen. „Wir haben erwartet, dass es einen scharfen Übergang gibt: Wird ein Grenzwert für die Stärke der Wechselwirkung überschritten, kommt es zur Bindung“, erklärt Dr. Shahin B. Bour vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. „Stattdessen haben wir festgestellt, dass dieser Übergang fließend ist: Je stärker das Teilchen mit dem Neutron wechselwirkt, desto stärker wird die Bindung zwischen ihnen.“ Dieses Verhalten widerspricht theoretischen Vorhersagen, die einen plötzlichen Übergang prognostizieren.
Die Wissenschaftler mussten für ihre Studie eigens ein neues Modellierungsverfahren entwickeln. Es fußt auf einem Algorithmus, der nicht zu Unrecht den Namen „Monte-Carlo-Simulation“ trägt. Wer seine Chancen beim Roulettespiel abschätzen möchte, kann einige Tage dem Croupier über die Schulter schauen und sich notieren, wie die Kugel fällt. Er kann das Roulettespiel jedoch auch im Computer nachbilden und dort eine virtuelle Kugel auf die Reise über die Drehscheibe schicken. Und das im Prinzip viele hunderttausend Mal.
Beim Roulette ist diese Vorgehensweise eigentlich nicht nötig. Die Gewinnchancen lassen sich schließlich ziemlich einfach berechnen – es bedarf dazu keiner Computersimulation. Wer aber beispielsweise wissen möchte, wie ein Regentropfen fällt – ob er durch die Kollision mit anderen Tropfen wächst oder schrumpft, ob er als Schneeflocke oder Hagelkorn auf dem Boden auftrifft –, der kommt um Monte-Carlo-Simulationen kaum herum.
Was passiert in Neutronensternen?
Die Fragestellung, die die Wissenschaftler mit ihrer Simulation beantworten, ist keineswegs nur von akademischem Interesse. „Ganz ähnliche Prozesse spielen sich beispielsweise in Neutronensternen ab“, betont Dr. Bour. „Wir wollen unsere Methode nutzen, um diese Vorgänge zu simulieren. So können wir genauer verstehen, was über unseren Köpfen passiert.“
Originalveröffentlichung
Shahin Bour, Dean Lee, H.-W. Hammer, und Ulf-G. Meißner; "Ab initio lattice results for Fermi polarons in two dimensions"; Physical Review Letters
Meistgelesene News
Originalveröffentlichung
Shahin Bour, Dean Lee, H.-W. Hammer, und Ulf-G. Meißner; "Ab initio lattice results for Fermi polarons in two dimensions"; Physical Review Letters
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.