Weltweit erste löchrige Flüssigkeit entwickelt
Eigentlich haben Flüssigkeiten keine stabilen größeren Löcher beziehungsweise Poren. Da deren Moleküle alle beweglich sind, zerfallen Poren sofort wieder. Poröse Festkörper andererseits wie Zeolithe und Metall-organische Gerüste (metal organic frameworks, MOF) werden schon länger in chemischen Prozessen, etwa der Katalyse und Gastrennung, in der Industrie eingesetzt. Diese starren Strukturen haben dauerhaft bestehende Poren gleicher Größe. Darin lassen sich Abfallprodukte wie Methan speichern. Probleme tauchen aber immer wieder auf, wenn sie in bestehende chemische Anlagen eingefügt werden sollen. Poröse Flüssigkeiten, die als Filter funktionieren, würden solche Hürden überwinden: sie könnten zum Beispiel einfach durch Leitungen gepumpt werden.
Sehr nah dran an dieser Anwendung sind nun die Forschenden mit ihrer neuen Materialklasse. Sie besteht aus Molekülkäfigen, die in einer Flüssigkeit aus Kronenether gelöst werden. Um die Käfige löslich zu machen, bauten die Wissenschaftler jeweils sechs Kronenether-Molekülgruppen an die Ecken der Käfige. Trotz einer hohen Konzentration an Käfigen erreichten sie auf diese Weise eine bei Raumtemperatur flüssige Substanz.
Herauszufinden, ob die Käfige in der Flüssigkeit auch wirklich leer waren, war Aufgabe der Experten von der Kieler Universität um den Professor für Materialverbunde Franz Faupel. Mit der sogenannten Positronenlebenszeitspektroskopie wiesen sie auch die Größe der Löcher experimentell nach. Dazu schoss Doktorand Tönjes Koschine mit Positronen, also Antimaterie, auf eine Probe der porösen Flüssigkeit. Positronen zerfallen sofort, wenn sie auf Elektronen treffen. „Wenn in der Flüssigkeit Löcher sind, gibt es an dieser Stelle auch keine Elektronen, die Positronen ‚leben‘ dort also länger, und das haben wir gemessen“, erklärt Koschine. Die Länge der Lebenszeit erlaube den Kieler Forschern auch Rückschlüsse auf die Größe der Poren. „Positronen leben in den Löchern etwa 10 Mal länger als wenn sie direkt auf Elektronen treffen, insgesamt also zwei Nanosekunden“, sagt Doktorvater Professor Klaus Rätzke. Eine Nanosekunde entspricht einer milliardstel Sekunde. Damit sind die Hohlräume in den Käfigen circa einen halben Nanometer groß, so groß wie zwei bis drei Atome. Die Kieler Wissenschaftler haben auf diese Weise die Ergebnisse der Simulationen innerhalb dieser internationalen Forschungskooperation bestätigt und einen wichtigen Beitrag zur Entwicklung und Charakterisierung von neuen Materialien geleistet.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!