Quantensensoren zur hochpräzisen Magnetfeldmessung an Supraleitern
Die Gruppe von Georg-H.-Endress-Professor Patrick Maletinsky erforscht bereits seit einigen Jahren sogenannte Stickstoff-Vakanzzentren (NV-Zentren) in Diamanten, um diese als hochpräzise Sensoren einzusetzen. Die NV-Zentren sind natürliche Defekte im Kristallgitter von Diamanten. Die darin enthaltenen Elektronen lassen sich anregen und manipulieren und reagieren empfindlich auf elektrische und magnetische Felder in ihrer Umgebung. Dabei ist es der Eigendrehimpuls (Spin) der Elektronen, der sich in Abhängigkeit der Umgebung verändert und mithilfe verschiedener Messmethoden erfassen lässt.
Maletinsky und seinem Team ist es gelungen, einzelne dieser NV-Spins an Spitzen von Rasterkraftmikroskopen zu platzieren, um damit auf der Nanoskala Magnetfelder abzubilden. Bislang wurden solche Analysen bei Raumtemperatur durchgeführt. Zahlreiche Einsatzgebiete verlangen jedoch Untersuchungstemperaturen nahe des absoluten Nullpunkts. So entfalten beispielsweise supraleitende Materialien ihre besonderen Eigenschaften erst bei sehr tiefen Temperaturen um -200°C. Sie leiten dann elektrischen Strom ohne Verluste und können mit der Ausbildung von sogenannten Vortices exotische magnetische Eigenschaften entwickeln.
Erstmals bei Temperaturen nahe des absoluten Nullpunkts
In der vorliegenden Arbeit haben die Wissenschaftler nun erstmals das neuartige Mikroskop unter kryogenen Bedingungen bei Temperaturen von etwa 4 Kelvin (-269,15 °C) erfolgreich eingesetzt. Sie konnten magnetische Streufelder von Vortices in einem Hochtemperatur-Supraleiter mit einer bislang unerreichten Genauigkeit darstellen.
Die resultierende örtliche Auflösung von 10 Nanometern ist um ein bis zwei Grössenordnungen besser als bei alternativen Methoden. Dies erlaubt erstmals eine genaue quantitative Analyse, beispielsweise eine eindeutige Bestimmung der magnetischen Eindringtiefe der supraleitenden Probe – eine der fundamentalen Grössen, die einen Supraleiter charakterisieren.
«Unsere Resultate sind nicht nur für die Quantensensorik und die Supraleitung von Relevanz», kommentiert Patrick Maletinsky die Arbeit. «Auf lange Sicht werden sie auch Einfluss auf die Festkörperphysik nehmen und mit einer weiteren Verbesserung der Sensitivität können sogar Anwendungen in der Biologie in den Fokus rücken.»
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.