Katalysator aus der Mikrowelle

Neuer Weg zu hochkristallinen Kohlenstoffnitriden für eine effiziente photokatalytische Wasserstofferzeugung

12.10.2016 - USA

Das Mittagessen aus der Mikrowelle schmeckt meist nicht annähernd so gut wie eine Mahlzeit aus dem konventionellen Backofen. Anders herum fallen die Qualitätsunterschiede aus, wenn es um graphitisches Kohlenstoffnitrid geht, einen Katalysator für die Wasserstoffherstellung mittels Sonnenlicht. Die Mikrowellen-Behandlung einer Vorstufe lieferte ein wesentlich kristallineres Produkt als die konventionelle Thermolyse im Ofen. Der so erhaltene Katalysator zeigte sich deutlich leistungsfähiger bei der Wasserstofferzeugung, wie Wissenschaftler in der Zeitschrift Angewandte Chemie berichten.

© Wiley-VCH

Die photokatalytische Wasserspaltung, bei der mit Sonnenlicht Wasser in Wasserstoff und Sauerstoff gespalten wird, ist eine umweltfreundliche Methode zur Gewinnung von Wasserstoff, beispielsweise für die Nutzung in Brennstoffzellen. Der Erfolg dieses Ansatzes steht und fällt jedoch mit der Effizienz des verwendeten Photokatalysators. Graphitisches Kohlenstoffnitrid (g-C3N3) ist ein vielversprechender Kandidat. Das Material besteht aus Sechsringen aus Kohlenstoff- und Stickstoffatomen. Drei Ringe sind jeweils über die Kanten miteinander verschmolzen (Triazin-Gruppe) und zudem jeweils über ein zusätzliches Stickstoffatom zu einer zweidimensionalen Schicht verknüpft. Die Schichtstruktur aus Sechsringen erinnern an Graphit. Anders als dieses ist g-C3N3 jedoch ein Halbleiter.

Je perfekter das Kristallgitter des g-C3N3, desto effektiver kann der Katalysator die Sonnenenergie einfangen und in den transportfähigen und nutzbaren Energieträger Wasserstoff umwandeln; Defekte im Kristallgitter beeinträchtigen die Leistungsfähigkeit. Forscher von der Anhui University (Hefei, China), der Harbin Normal University (Harbin, China) sowie dem Georgia Institute of Technology (Atlanta, USA) haben jetzt eine neue Herstellungsmethode für g-C3N3 entwickelt, die zu einem hochkristallinen Produkt mit besonders wenigen Defekten führt.

Das Team um Yupeng Yuan und Zhiqun Lin stellte dazu zunächst in einem Lösungsmittel Aggregate aus zwei verschiedenen Ausgangsverbindungen her, Melamin und Cyanursäure, die aus Kohlenstoff-Stickstoff-Sechsringen bestehen. Aufgrund ihrer speziellen Seitengruppen können sie untereinander Wasserstoffbrückenbindungen eingehen. Immer abwechselnd lagern sie sich zu weitläufigen zweidimensionalen Aggregaten zusammen. Die Bausteine haben darin schon die passende Anordnung für die nun folgende endgültige feste Verknüpfung der Ringe zu g-C3N3, was die Wahrscheinlichkeit für Fehlstellen verringert.

Statt die Aggregate nun durch Erhitzen in einem elektrischen Ofen zu verknüpfen (Thermolyse), wählten die Forscher eine Behandlung mit Mikrowellen. Dieses Verfahren ist nicht nur viel schneller: 16 Minuten erwiesen sich als günstig. Es bringt auch ein Material hervor, das eine doppelt so hohe photokatalytische Aktivität bei der Erzeugung von Wasserstoff zeigt. Ursache ist die wesentlich bessere Kristallinität, die erreicht wird, weil die Mikrowellenstrahlung die Stickstoff-reichen Moleküle anregt und für eine starke Rotation, Reibung und Kollision untereinander sorgt.

Originalveröffentlichung

Zhiqun Lin et al.; "A Rapid Microwave-Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation"; Angewandte Chemie; 2016

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller