Erwin Schrödinger-Preis für Nanotechnologie
Zwei bahnbrechende Arbeiten machten das Karlsruher Team, Frank Hennrich, Ralph Krupke, Marcel Mayor und Heiko Weber, unter Fachkollegen in den letzten Jahren weltweit bekannt: Sie entwickelten ein seit langer Zeit gesuchtes Verfahren zur Trennung von winzigen Kohlenstoffröhrchen, die in der Nanotechnologie eine wichtige Rolle spielen. Und: Es gelang ihnen, den elektrischen Strom durch einzelne organische Moleküle zu vermessen. Durch systematische Zusammenarbeit hat das Karlsruher Team damit zwei grundsätzliche Probleme gelöst, die das gesamte Arbeitsgebiet der Nanotechnologie betreffen. Zusammen ebnen ihre Arbeiten den Weg zu einer künftigen Nanoelektronik, bei der winzige Schaltkreise in der Größe von Millionstel Millimetern gebaut werden könnten. Dieser Elektronik im kleinsten Maßstab wird etwa in der Computer-, Satelliten- oder Medizintechnik eine wichtige Rolle vorausgesagt. Sie würde es ermöglichen, winzige Chips zu bauen und damit die Rechenleistung auf kleinstem Raum entscheidend zu verbessern. Die Kohlenstoffröhrchen der Karlsruher könnten dabei als "Drähte" fungieren und die organischen Moleküle als Speichermedien dienen.
Kleiner geht nicht
Der Erwin Schrödinger-Preis wird jährlich als Auszeichnung für herausragende wissenschaftliche oder technisch innovative Leistungen vergeben, die in Grenzgebieten zwischen verschieden Fächern unter Beteiligung von Helmholtz-Wissenschaftlern geleistet werden. "Den diesjährigen Preisträgern ist auf einzigartige Weise gelungen, interdisziplinär zusammenzuarbeiten und die Bereiche Chemie und Physik auf einem innovativen Forschungsgebiet fruchtbar miteinander zu verbinden", erklärt Prof. Karin Mölling, Vorsitzende der Jury. "Dort wo physikalische Bauteile immer kleiner und chemische Moleküle immer größer werden, treffen sich die Physik und die Chemie ", so die Physikerin und Direktorin des Instituts für Medizinische Virologie an der Universität Zürich. "An dieser Grenze befindet sich die Nanotechnologie: Schaltungen werden da auf molekularer Ebene gebaut. Kleiner geht es nicht mehr!"
"Makkaroni" aus Kohlenstoffatomen
Bereits 1991 entdeckten japanische Forscher, dass sich Kohlenstoffatome zu winzigen Röhrchen formen können, deren Wände nur eine Atomlage dick sind. Seitdem sind "Nanoröhren" zu einem der wichtigsten Forschungsobjekte der Nanotechnologie geworden. Insbesondere in der molekularen Elektronik galten sie schon früh als Grundbausteine elektronischer Bauteile. Bisher jedoch gab es eine Schwierigkeit: Bei der Herstellung entsteht immer ein Gemisch aus zwei Typen von Nanoröhren mit unterschiedlichen elektrischen Eigenschaften. Je nach Anordnung der Atome in den Wänden der Röhrchen verhalten sich die "Kohlenstoffmakkaroni" entweder wie Metalle oder wie Halbleiter. Erst die Arbeiten des Karlsruher Forscherteams ermöglichen es jetzt, die halbleitenden und metallischen Röhrchen in einer Lösung voneinander zu trennen und so zu sortieren. "In einem elektrischen Wechselfeld mit einer Frequenz von 10 Millionen Hertz wandern die metallischen und die halbleitenden Nanoröhren in entgegengesetzte Richtungen. Damit können die metallischen Röhrchen abgeschieden werden. Die nichtmetallischen verbleiben in der Lösung", erklärt der Physiker Dr. Ralph Krupke. Gemeinsam mit dem Chemiker Dr. Frank Hennrich konnte er das Problem in einem fachübergreifenden Ansatz lösen.
Moleküle unter Strom
Für elektrische Schaltungen im Nanomaßstab braucht man aber außer winzigen Drähten weitere Bauteile. Die Halbleiteringenieure schafften es zwar in den vergangenen 20 Jahren, immer höher integrierte elektronische Schaltungen aus Silizium herzustellen, wobei die Abmessungen der einzelnen Bauteile immer winziger wurden. Vermutlich werden sie in den nächsten Jahren sogar auf wenige Nanometer schrumpfen. Damit aber erreicht die Verkleinerung endgültig physikalische Grenzen.
Einen Ausweg scheint die elektronische Verschaltung von Molekülen zu bieten. Für solche molekularen Schaltkreise muss man einzelne Moleküle elektrisch kontaktieren können. Außerdem benötigt man Moleküle, deren Leitungsmechanismus vorhersagbar ist. Den Karlsruher Forschern gelang hier ein Durchbruch: Denn sie schafften es, einzelne Moleküle zwischen zwei Elektroden einzuspannen und den Strom durch diese Moleküle zu messen. "Zum Nachweis haben wir symmetrische und asymmetrische Moleküle hergestellt und kontaktiert", erläutert Dr. Marcel Mayor, der mit Dr. Heiko Weber in interdisziplinärer Chemie-Physik-Partnerschaft gearbeitet hat. Auf diese Weise gewannen die Wissenschaftler eine für die molekulare Elektronik entscheidenden Erkenntnis: Durch geeignete Wahl der molekularen Struktur können die elektronischen Eigenschaften der "Bauteile" tatsächlich festgelegt werden. Zwar war die Idee, einzelne Moleküle als elektronische Bauteile einzusetzen, nicht neu. Erstmals wurden aber die elektronischen Transportprozesse in den Molekülen umfassend vermessen und verstanden.