Oxid eines Hauptgruppenelements wird zum Metall

09.04.2008

Wie "Nature Materials" berichtete, ist es Wissenschaftlern der RWTH Aachen in Zusammenarbeit mit Kollegen der Universitäten Giessen, Braunschweig und Darmstadt erstmals gelungen, in einem Oxid eines Hauptgruppenelementes einen Isolator-Metall-Übergang zu induzieren. Dieses Phänomen ist gleichermaßen interessant für die Grundlagenforschung wie für technologische Anwendungen, z.B. zur Datenspeicherung. Das Team der RWTH Aachen am Lehrstuhl für Physikalische Chemie I steht unter der Leitung von Univ.-Prof. Dr. Manfred Martin.

Isolator-Metall-Übergänge, bei denen ein elektrischer Isolator metallisch leitend wird, gehören zu den faszinierendsten Phänomenen in der Festkörperforschung und werden weltweit intensiv untersucht. Mögliche Ursachen für den Übergang sind die Wechselwirkung der Elektronen, die sich gegenseitig behindern können, sowie die strukturelle Fehlordnung, z.B. in amorphen Festkörpern ohne regelmäßige Gitterstruktur. Die bisher untersuchten Isolator-Metall-Übergänge betreffen dabei Übergangsmetalloxide, in denen das Übergangsmetall leicht seinen Oxidationszustand wechseln kann.

Den Wissenschaftlern um Prof. Martin gelang es nun, in einem Oxid des Hauptgruppenelementes Gallium einen Isolator-Metall-Übergang zu erzeugen, bei dem sich die elektrische Leitfähigkeit des Materials um ca. 7 Größenordnungen ändert. Dies wurde möglich durch eine Kombination aus struktureller Fehlordnung und chemischer Fehlordnung. Dazu wurde ein amorphes Galliumoxid ohne regelmäßige Gitterstruktur präpariert, welches einen starken Galliumüberschuss aufweist. Beim Aufheizen dieses Materials erfolgt eine Kristallisation von stabilem Ga2O3, wobei die überschüssigen Galliumatome in die amorphe Matrix abgegeben werden und dort die elektronische Bandlücke verringern, bis bei einem kritischen Galliumüberschuss der Isolator-Metall-Übergang erfolgt. Dieser neuartige Mechanismus zur Erzeugung eines Isolator-Metall-Übergangs ist nicht auf Galliumoxid beschränkt und eröffnet einen viel versprechenden Weg, um Oxide, die eigentlich als klassische Isolatoren bekannt sind, in einen metallisch leitenden Zustand zu bringen.

Die experimentellen Ergebnisse und die daraus entwickelte Modellvorstellung für den Isolator-Metallübergang wurden durch aufwändige, computergestützte Berechnungen der elektronischen Eigenschaften des nichtstöchiometrischen Galliumoxides bestätigt. Darüber hinaus konnten die Forscher zeigen, dass es eine enge Korrelation zwischen den strukturellen und elektronischen Eigenschaften sowie der elektrischen Leitfähigkeit und den optischen Eigenschaften des neuen Materials gibt.

Die Arbeiten wurden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Schwerpunktprogramms SPP 1136 "Substitutionseffekte in ionischen Festkörpern" gefördert.

Originalveröffentlichung: L. Nagarajan, R. A. De Souza, D. Samuelis, I. Valov, A. Börger, J. Janek, K. D. Becker, P. C. Schmidt, and M. Martin; "A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide"; Nature Materials advance online publication, 2008 (doi:10.1038/nmat2164).

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Rotating Ring Disk Elektrode Rotator

Rotating Ring Disk Elektrode Rotator von C3 Prozess- und Analysentechnik

Präzise Rotation und einfacher Elektrodenwechsel - Entdecken Sie das innovative Rotator-System!

rotierende Scheibenelektroden
Elektrochemische Messzellen und Elektroden

Elektrochemische Messzellen und Elektroden von C3 Prozess- und Analysentechnik

Ersetzen Sie viele Messzellen mit unserer vielseitigen Voltammetriezelle für präzise Messergebnisse

elektrochemische Messzellen
Interface 1010

Interface 1010 von C3 Prozess- und Analysentechnik

Optimieren Sie Ihre elektrochemische Messungen für präzise Ergebnisse und vielfältige Anwendungsmöglichkeiten

Potentiostate
Reference 620

Reference 620 von C3 Prozess- und Analysentechnik

Potentiostat / Galvanostat / ZRA mit maximaler Empfindlichkeit und minimalem Rauschen für wegweisende Forschung

elektrochemische Systeme
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...