Neues Konzept für eine effizientere Wirkstoffsuche
"Domänenkonzept" des Dortmunder Max-Planck-Instituts für molekulare Physiologie ermöglicht effizientere Suche nach medizinischen Wirkstoffen
Nachdem das menschliche Genom vollständig entziffert worden ist, begeben sich die Forscher weltweit auf die Suche nach jenen Genen, deren Sequenzen Ähnlichkeit mit denen so genannter "Erfolgsmoleküle" haben. Als "Erfolgsmoleküle" gelten dabei solche Proteine die Angriffspunkte von medizinischen Wirkstoffen, also Medikamenten sind. Versteckt im Genom schlummert eine Vielzahl neuer potentieller Angriffspunkte für medizinische Therapien. Doch wie findet man rasch und effizient den richtigen Wirkstoffkandidaten? Das Ganze gleicht der berühmten Suche nach der Stecknadel im Heuhaufen: Für jeden molekularen Angriffspunkt müssen derzeit etwa 10.000 Verbindungen hergestellt werden, um schließlich einen Treffer zu landen. Die Forscher vom Max-Planck-Institut für molekulare Physiologie in Dortmund wollen diesen Suchprozess mit Hilfe der Kombinatorischen Chemie in der Evolution selektionierter und damit biologisch relevanter Naturstoffe optimieren.
Bisher werden die Zielmoleküle zunächst einmal gedanklich in einzelne Bausteine zerlegt. Bei der realen chemischen Synthese werden diese dann breit variiert und so miteinander verknüpft dass möglichst alle Kombinationsmöglichkeiten ausgeschöpft werden. Auf diese Weise lassen sich so genannte "Substanzbibliotheken" mit Tausenden bis zu Hunderttausenden und in manchen Fällen sogar bis zu Millionen von chemischen Wirkstoffen aufbauen. Hauptkriterien für den Entwurf der Bibliotheken und die Planung der Synthese waren bisher die chemische Machbarkeit, die Verfügbarkeit geeigneter Bausteine sowie robuster und zuverlässiger Synthesemethoden, die auch bei viel tausendfacher Anwendung kaum versagen. Doch allein das intensive Kombinieren der chemischen Bausteine in einer Art "Zahlenspiel" löst das Kernproblem noch nicht: Nur allzu oft sind die Trefferquoten in den nachfolgenden biologischen Tests dieser Wirkstoffkandidaten enttäuschend niedrig. Bei der Suche kommt es also darauf an, nicht einfach möglichst viele Substanzen herzustellen, sondern vor allem eine genügend große Anzahl der "richtigen", d.h. der für das jeweilige biologische Zielsystem relevanten Wirkstoffe zu gewinnen. Herbert Waldmann und seine Mitarbeiter am Max-Planck-Institut für Molekulare Physiologie haben ein neues Konzept entwickelt, das die Effizienz bei der Identifizierung der "richtigen" Substanztypen und damit neuer Wirkstoffkandidaten deutlich steigern könnte. Grundlage dieses Konzepts ist die Erkenntnis, dass bereits die Natur die Angriffspunkte für die Wirkstoffe, also die Proteine, modular aufbaut: Proteine bestehen nämlich aus so genannten Proteindomänen, die strukturell oft konserviert, genetisch aber mobil sind und die im Laufe der Evolution immer wieder eingesetzt werden: Um neue funktionstragende Proteine zusammenzustellen, kann quasi auf "Formteile" aus einem Baukasten zurückgegriffen werden.
Und so findet man innerhalb einer Spezies, aber auch in verschiedenen Arten, viele Proteine, die, obwohl sie unterschiedliche Funktionen haben, oft sehr ähnliche Domänen besitzen. Bei aller Ähnlichkeit sind ihre Unterschiede allerdings immer noch so groß, dass nur bestimmte Bindungspartner, die Forscher sprechen von Liganden, selektiv an sie anbinden können. Letzteres wiederum ist eine Grundvoraussetzung für die Entwicklung von medizinischen Wirkstoffen. Darüber hinaus fiel den Forschern auf, dass auch bei natürlich auftretenden Liganden für Proteine, also bei biologisch aktiven Naturstoffen, bestimmte Grundstrukturen wiederholt auftreten. Die Max-Planck-Forscher schlagen deshalb vor, die grundlegende Struktur solcher Naturstoffklassen, die offenbar in der Evolution für die Bindung an ganz bestimmte Proteindomänen selektioniert wurden, als Basis für den Entwurf und die Herstellung von Substanzbibliotheken zu verwenden. Diese Bibliotheken sollten mit einer deutlich höheren Frequenz biologisch aktive Treffer, so genannte "Hits", liefern als die herkömmliche Wirkstoffsuche, die besonders auf der Basis der reinen "Zahlenkombination" und damit der chemischen Machbarkeit aufbaut.
Bisher werden die Zielmoleküle zunächst einmal gedanklich in einzelne Bausteine zerlegt. Bei der realen chemischen Synthese werden diese dann breit variiert und so miteinander verknüpft dass möglichst alle Kombinationsmöglichkeiten ausgeschöpft werden. Auf diese Weise lassen sich so genannte "Substanzbibliotheken" mit Tausenden bis zu Hunderttausenden und in manchen Fällen sogar bis zu Millionen von chemischen Wirkstoffen aufbauen. Hauptkriterien für den Entwurf der Bibliotheken und die Planung der Synthese waren bisher die chemische Machbarkeit, die Verfügbarkeit geeigneter Bausteine sowie robuster und zuverlässiger Synthesemethoden, die auch bei viel tausendfacher Anwendung kaum versagen. Doch allein das intensive Kombinieren der chemischen Bausteine in einer Art "Zahlenspiel" löst das Kernproblem noch nicht: Nur allzu oft sind die Trefferquoten in den nachfolgenden biologischen Tests dieser Wirkstoffkandidaten enttäuschend niedrig. Bei der Suche kommt es also darauf an, nicht einfach möglichst viele Substanzen herzustellen, sondern vor allem eine genügend große Anzahl der "richtigen", d.h. der für das jeweilige biologische Zielsystem relevanten Wirkstoffe zu gewinnen.
Als nächstes werden die Dortmunder Wissenschaftler die Hauptklassen von Proteindomänen sowie ihre natürlichen Liganden analysieren. Umgekehrt suchen sie in bekannten, biologisch aktiven Naturstoffklassen nach grundlegenden, sich wiederholenden Strukturmotiven. Auf Grundlage dieser Analysen wollen sie neue Substanzbibliotheken entwerfen und aufbauen, ihr Konzept weiter untermauern und verfeinern und gezielt nach neuen medizinisch wichtigen Wirkstoffen suchen. Die "kombinatorische Naturstoffsynthese" haben die Dortmunder Wissenschaftler auch in die Neugründung einer "Start-up"-Firma eingebracht. Herbert Waldmann und Alfred Wittinghofer vom Dortmunder Max-Planck-Institut für Molekulare Physiologie, Walter Birchmeier vom Max-Delbrück-Zentrum Berlin, Hans Bos und Hans Clevers vom University Medical Center Utrecht sowie der erfahrene Pharma-Manager Rian de Jonge haben die Firma Semaia Pharmaceuticals gegründet. Semaia vereint Tumorbiologie, Strukturbiologie und Medizinische Chemie unter einem Dach und entwickelt neue Medikamente gegen Krankheiten, die durch Fehler in der biologischen Signalübertragung verursacht werden. Dazu gehört insbesondere Krebs.