Goldige Stäbchen

Für medizinische Zwecke: Herstellung von Gold-Nanostäbchen ohne Einsatz zytotoxischer Additive

09.09.2008 - Deutschland

Nanopartikel aus Gold sind für eine ganze Reihe von biomedizinischen Anwendungen in der Diskussion, wie der Tumortherapie. Ein deutsch-amerikanisches Forscherteam von der Carnegie Mellon University in Pittsburgh, dem Hunter College in New York und der RWTH Aachen hat nun eine neue Herstellungsmethode für nanoskopische Goldstäbchen entwickelt. Anders als herkömmliche Verfahren kommen sie dabei ohne den Einsatz zytotoxischer Additive aus. Wie die Forscher in der Zeitschrift Angewandte Chemie berichten, läuft die Synthese nicht in Wasser, sondern in einer ionischen Flüssigkeit, einem „flüssigen Salz“, ab.

Krebszellen sind vergleichsweise temperaturempfindlich. Dies wird therapeutisch genutzt, indem Körperpartien von Krebspatienten örtlich erwärmt werden. Eine vielversprechende Methode könnte die photoinduzierte Hyperthermie sein, bei der Lichtenergie in Wärme umgewandelt wird. Gold-Nanopartikel absorbieren sehr stark Licht im nahen Infrarot, ein Spektralbereich, der von Gewebe kaum absorbiert wird. Die absorbierte Lichtenergie versetzt die Goldteilchen in Schwingungen und wird als Wärme an die Umgebung abgegeben. Die winzigen Goldteilchen könnten so funktionalisiert werden, dass sie spezifisch an Tumorzellen binden. So werden nur Zellen abgetötet, die Goldstäbchen enthalten.

Das Problem: Gewöhnliche sphärische Goldpartikel wandeln die Lichtenergie nicht effektiv genug in Wärme um, das können nur stäbchenförmige Goldteilchen. Unglücklicherweise sind die Hilfsstoffe, die man braucht, um die Stäbchenform aus wässriger Lösung zu kristallisieren, zytotoxisch.

Das Team um Michael R. Bockstaller verfolgt jetzt eine neue Strategie: Statt einer wässrigen Lösung wählten sie eine ionische Flüssigkeit als Kristallisationsmedium. Es handelt sich dabei um „flüssige Salze“, organische Verbindungen, die als entgegengesetzt geladene Ionen, aber als Flüssigkeit vorliegen. Den Forschern gelang es auf diese Weise, Goldnanostäbchen herzustellen, ganz ohne den Einsatz zytotoxischer Additive.

Im ersten Schritt werden Kristallisationskeime hergestellt – in Form winziger sphärischer Goldpartikel. Diese Keime werden zu einer „sekundären Wachstumslösung“ gegeben, die einwertige Goldionen, Silberionen und das schwache Reduktionsmittel Ascorbinsäure enthält. Lösungsmittel ist eine imidazoliumbasierte ionischen Flüssigkeit. Hier wachsen die Kristalle nicht mehr kugelförmig weiter, sondern es entstehten längliche Stäbchen mit den runden Kristallisationskeimen als „Köpfen“. Der mutmaßliche Mechanismus nutzt die verschiedenen, energetisch nicht gleichwertigen Flächen des Kristallgitters: Die aromatischen stickstoffhaltigen Fünfringe der ionischen Flüssigkeit lagern sich bevorzugt an die hochenergetischen kristallographischen Ebenen von Gold-Oberflächen an. Sie stabilisieren damit Kristallformen, die eine geringere Zahl an niederenergetischen Flächen aufweisen als die normale sphärische Gleichgewichtsform. Lange Stäbchen entstehen.

Originalveröffentlichung: Michael R. Bockstaller et al. ;"Imidazoliumbasierte ionische Flüssigkeiten als effiziente forminduzierende Lösungsmittel für die Synthese von Gold-Nanostäbchen"; Angewandte Chemie 2008, 120, No. 40.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...