Metallische Nano-Katalysatoren ahmen die Struktur von Enzymen nach
Die Natur ist bei der Katalyse teils effizienter als künstliche Systeme. Einen der Tricks haben sich Forscher abgeschaut.
© RUB, Marquard
Ein internationales Forscherteam hat bestimmte Strukturmerkmale von natürlichen Enzymen, die für eine besonders hohe katalytische Aktivität sorgen, auf metallische Nanopartikel übertragen. Die gewünschte chemische Reaktion fand so nicht wie üblich an der Partikeloberfläche statt, sondern in Kanälen im Inneren der Metallpartikel – und zwar mit dreifach höherer katalytischer Aktivität. Über diese sogenannten Nanozyme berichtet ein Team der University of New South Wales, Australien, und der Ruhr-Universität Bochum im Journal of the American Chemical Society.
Aktive Zentren in Kanälen
Bei Enzymen liegen die aktiven Zentren, an denen die chemische Reaktion stattfindet, im Inneren. Die reagierenden Substanzen müssen durch einen Kanal aus der umgebenden Lösung zum aktiven Zentrum gelangen, wo aufgrund der räumlichen Struktur besonders günstige Reaktionsbedingungen herrschen. „Es wird vermutet, dass in den Kanälen zum Beispiel ein lokal veränderter pH-Wert herrscht und dass auch die elektronische Umgebung in den aktiven Zentren für die Effizienz natürlicher Enzyme verantwortlich ist“, sagt Prof. Dr. Wolfgang Schuhmann, Leiter des Bochumer Zentrums für Elektrochemie.
Kanäle in Nickel-Platin-Partikeln erzeugt
Um die Enzymstrukturen künstlich nachzuahmen, erzeugten die Forscher Partikel aus Nickel und Platin von rund zehn Nanometern Durchmesser. Durch chemisches Ätzen entfernten sie das Nickel anschließend wieder, wodurch sich Kanäle bildeten. Im letzten Schritt inaktivierten sie die aktiven Zentren an der Partikeloberfläche. „So konnten wir sicherstellen, dass nur die aktiven Zentren in den Kanälen an der Reaktion teilnehmen“, erklärt Patrick Wilde, Doktorand am Zentrum für Elektrochemie. Die katalytische Aktivität der so hergestellten Partikel verglichen die Forscher mit der Aktivität von herkömmlichen Partikeln mit aktiven Zentren an der Oberfläche.
Dreifach höhere Aktivität
Für den Test nutzte das Team die Sauerstoffreduktionsreaktion, die unter anderem die Grundlage für den Betrieb von Brennstoffzellen bildet. Aktive Zentren am Ende der Kanäle katalysierten die Reaktion dreimal effizienter als aktive Zentren an der Partikeloberfläche.
„Die Ergebnisse zeigen das enorme Potenzial der Nanozyme“, resümiert Dr. Corina Andronescu, Gruppenleiterin am Zentrum für Elektrochemie. Die Wissenschaftler wollen das Konzept nun auf andere Reaktionen, zum Beispiel die elektrokatalytische CO2-Reduktion, ausweiten und die Grundlagen der erhöhten Aktivität detaillierter untersuchen. „In Zukunft möchten wir die Arbeitsweise der Enzyme noch besser nachahmen können“, ergänzt Schuhmann. „Letztendlich soll das Konzept zu industriellen Anwendungen beitragen, um Energieumwandlungsprozesse unter Nutzung von regenerativ erzeugtem Strom effizienter zu machen.“
Originalveröffentlichung
Tania M. Benedetti, Corina Andronescu, Soshan Cheong, Patrick Wilde, Johanna Wordsworth, Martin Kientz, Richard D. Tilley, Wolfgang Schuhmann, J. Justin Gooding; "Electrocatalytic nanoparticles that mimic the three-dimensional geometric architecture of enzymes: nanozymes"; Journal of the American Chemical Society; 2018
Meistgelesene News
Originalveröffentlichung
Tania M. Benedetti, Corina Andronescu, Soshan Cheong, Patrick Wilde, Johanna Wordsworth, Martin Kientz, Richard D. Tilley, Wolfgang Schuhmann, J. Justin Gooding; "Electrocatalytic nanoparticles that mimic the three-dimensional geometric architecture of enzymes: nanozymes"; Journal of the American Chemical Society; 2018
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung
DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.