Symbiotische CO₂-Speicherung

Biotechnologische Mikrobengemeinschaft als Kohlenstoffsenke

14.12.2022 - China

Die Natur besitzt mit der Photosynthese ein leistungsfähiges System, um der Atmosphäre Kohlendioxid zu entziehen und zu speichern (sequestrieren). Der Aufbau von Biomasse allein nutzt das Potenzial jedoch nicht aus. Ein chinesisches Forschungsteam hat durch genetisches Engineering eine Mikrobengemeinschaft erzeugt, die als lebende Kohlenstoffsenke dienen könnte. Darin wird Kohlendioxid erst durch Photosynthese in Zucker und dann in nützliche Chemikalien umgewandelt. Die Studie wurde in der Zeitschrift Angewandte Chemie veröffentlicht.

Computer-generated image

Symbolbild

© Wiley-VCH

Computer-generated image
© Wiley-VCH

Verschiedene Bakterienstämme werden biotechnologisch genutzt, um bestimmte Chemikalien herzustellen. So produzieren manche genveränderte Stämme Milchsäure, aus der der biologisch abbaubare Kunststoff Polylactid gefertigt wird. Andere reichern Vorstufen für Biokraftstoffe oder Pharmaka an. Da die Bakterien jedoch Energie und Nahrung benötigen, ist eine bakterielle Produktion von Chemikalien oft wenig effizient.

Phototrophe Organismen produzieren dagegen auf natürliche Weise Zucker aus Kohlendioxid, Wasser und Sonnenlicht. In einer symbiotischen Gemeinschaft könnten Chemikalien produzierende Bakterien auf diesen Zucker als Nahrung zugreifen. Sie wären somit eine mögliche Kohlenstoffsenke. Allerdings produzieren viele photoautotrophe Organismen Saccharose als Speicherzucker. Und gerade mit diesem Zucker können die biotechnisch genutzten Bakterien nicht viel anfangen.

Die Arbeitsgruppe von Jun Ni an der Jiaotong-Universität Shanghai suchte daher systematisch nach biotechnologisch veränderbaren Bakterienstämmen, die natürlicherweise auf Saccharose wachsen. Und wurden mit einem Meeresbakterium namens Vibrio natriegens fündig. „V. natriegens verfügt zum Glück über den gesamten Reaktionsweg zum Transport und dem Stoffwechsel von Saccharose,“ schreiben die Forschenden. Zudem sei das Meeresbakterium genetisch manipulierbar und vertrage Salzstress. Salz wiederum regt Cyanobakterien, die Photosynthese betreiben, zur Saccharoseproduktion in sich gegenseitig verstärkenden Prozessen an.

Aus dem bekannten Cyanobakterium Synechococcus elongatus und V. natriegens baute das Forschungsteam dann ein integriertes modulares System zur CO2-Sequestrierung auf. An den Cyanobakterien verbesserten sie durch Gen-Engineering die Zuckerproduktion, und V. natriegens statteten sie mit einem Gen aus, das die Zuckeraufnahme erhöht. Als unerwartet effizienten Transporter der hergestellten Saccharose beobachteten die Forschenden Vesikel, mit denen die Cyanobakterien den Zucker ausschleusten und die das Meeresbakterium leicht aufnehmen konnte.

Vier Varianten von V. natriegens stellte das Team her, um entweder Milchsäure, Butandiol zur Biokraftstoffsynthese oder Coumarin und Melanin als Vorstufen für Chemikalien und Pharmaka zu produzieren. In Symbiose mit den Cyanobakterien produzierten die Bakterien die Chemikalien mit einer negativen Kohlenstoffbilanz. „Dieses System konnte mehr als 20 Tonnen Kohlendioxid pro Tonne Produkt aufnehmen,“ berichtet das Team. Die Autor:innen der Studie sehen ihre Ergebnisse als Beweis dafür, dass symbiotische Mikrobengemeinschaften als wirksame Kohlendioxidsenken verwendet werden können.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Synthese

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren